These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 9916035)

  • 1. The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins.
    Fitter J
    Biophys J; 1999 Feb; 76(2):1034-42. PubMed ID: 9916035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature- and hydration-dependent internal dynamics of stripped human erythrocyte vesicles studied by incoherent neutron scattering.
    Combet S; Zanotti JM; Bellissent-Funel MC
    Biochim Biophys Acta; 2011 Feb; 1810(2):202-10. PubMed ID: 21059380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering.
    Ferrand M; Dianoux AJ; Petry W; Zaccaï G
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9668-72. PubMed ID: 8415760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical transition of myoglobin revealed by inelastic neutron scattering.
    Doster W; Cusack S; Petry W
    Nature; 1989 Feb; 337(6209):754-6. PubMed ID: 2918910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular motions and hydration of purple membranes and disk membranes studied by neutron scattering.
    Fitter J; Ernst OP; Hauss T; Lechner RE; Hofmann KP; Dencher NA
    Eur Biophys J; 1998; 27(6):638-45. PubMed ID: 9791944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering.
    Pieper J; Hauss T; Buchsteiner A; Baczyński K; Adamiak K; Lechner RE; Renger G
    Biochemistry; 2007 Oct; 46(40):11398-409. PubMed ID: 17867656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of conformational states on protein dynamical transition.
    Nakagawa H; Kamikubo H; Kataoka M
    Biochim Biophys Acta; 2010 Jan; 1804(1):27-33. PubMed ID: 19595799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picosecond molecular motions in bacteriorhodopsin from neutron scattering.
    Fitter J; Lechner RE; Dencher NA
    Biophys J; 1997 Oct; 73(4):2126-37. PubMed ID: 9336208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean square fluctuations of hydrogen atoms and water-biopolymer interactions in hydrated saccharides.
    Di Bari M; Cavatorta F; Deriu A; Albanese G
    Biophys J; 2001 Aug; 81(2):1190-4. PubMed ID: 11463660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular origin and hydration dependence of protein anharmonicity: an elastic neutron scattering study.
    Schiró G; Caronna C; Natali F; Cupane A
    Phys Chem Chem Phys; 2010 Sep; 12(35):10215-20. PubMed ID: 20668739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incoherent neutron scattering of copper azurin: a comparison with molecular dynamics simulation results.
    Paciaroni A; Stroppolo ME; Arcangeli C; Bizzarri AR; Desideri A; Cannistraro S
    Eur Biophys J; 1999; 28(6):447-56. PubMed ID: 10460338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural equilibrium fluctuations in mesophilic and thermophilic alpha-amylase.
    Fitter J; Heberle J
    Biophys J; 2000 Sep; 79(3):1629-36. PubMed ID: 10969023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the environment on the protein dynamical transition: a neutron scattering study.
    Paciaroni A; Cinelli S; Onori G
    Biophys J; 2002 Aug; 83(2):1157-64. PubMed ID: 12124295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical Transition of Collective Motions in Dry Proteins.
    Liu Z; Huang J; Tyagi M; O'Neill H; Zhang Q; Mamontov E; Jain N; Wang Y; Zhang J; Smith JC; Hong L
    Phys Rev Lett; 2017 Jul; 119(4):048101. PubMed ID: 29341744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels.
    Golysheva EA; Shevelev GY; Dzuba SA
    J Chem Phys; 2017 Aug; 147(6):064501. PubMed ID: 28810753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for water motion in crystals of lysozyme based on an incoherent quasielastic neutron-scattering study.
    Bon C; Dianoux AJ; Ferrand M; Lehmann MS
    Biophys J; 2002 Sep; 83(3):1578-88. PubMed ID: 12202382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering.
    Diehl M; Doster W; Petry W; Schober H
    Biophys J; 1997 Nov; 73(5):2726-32. PubMed ID: 9370466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics of solid-state lysozyme as affected by glycerol and water: a neutron scattering study.
    Tsai AM; Neumann DA; Bell LN
    Biophys J; 2000 Nov; 79(5):2728-32. PubMed ID: 11053145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protein-solvent glass transition.
    Doster W
    Biochim Biophys Acta; 2010 Jan; 1804(1):3-14. PubMed ID: 19577666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further evidence that interfacial water is the main "driving force" of protein dynamics: a neutron scattering study on perdeuterated C-phycocyanin.
    Combet S; Zanotti JM
    Phys Chem Chem Phys; 2012 Apr; 14(14):4927-34. PubMed ID: 22388956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.