These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 9916039)
1. Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. Mueller H; Butt HJ; Bamberg E Biophys J; 1999 Feb; 76(2):1072-9. PubMed ID: 9916039 [TBL] [Abstract][Full Text] [Related]
2. Adsorption mechanism of myelin basic protein on model substrates and its bridging interaction between the two surfaces. Lee DW; Banquy X; Kristiansen K; Min Y; Ramachandran A; Boggs JM; Israelachvili JN Langmuir; 2015 Mar; 31(10):3159-66. PubMed ID: 25706854 [TBL] [Abstract][Full Text] [Related]
3. A thermodynamic and structural study of myelin basic protein in lipid membrane models. Rispoli P; Carzino R; Svaldo-Lanero T; Relini A; Cavalleri O; Fasano A; Liuzzi GM; Carlone G; Riccio P; Gliozzi A; Rolandi R Biophys J; 2007 Sep; 93(6):1999-2010. PubMed ID: 17513373 [TBL] [Abstract][Full Text] [Related]
4. Dibucaine effects on structural and elastic properties of lipid bilayers. Lorite GS; Nobre TM; Zaniquelli ME; de Paula E; Cotta MA Biophys Chem; 2009 Feb; 139(2-3):75-83. PubMed ID: 19010585 [TBL] [Abstract][Full Text] [Related]
5. Myelin basic protein and myelin protein 2 act synergistically to cause stacking of lipid bilayers. Suresh S; Wang C; Nanekar R; Kursula P; Edwardson JM Biochemistry; 2010 Apr; 49(16):3456-63. PubMed ID: 20334434 [TBL] [Abstract][Full Text] [Related]
6. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass. Benes M; Billy D; Benda A; Speijer H; Hof M; Hermens WT Langmuir; 2004 Nov; 20(23):10129-37. PubMed ID: 15518504 [TBL] [Abstract][Full Text] [Related]
7. Aggregation of acidic lipid vesicles by myelin basic protein: dependence on potassium concentration. Jo E; Boggs JM Biochemistry; 1995 Oct; 34(41):13705-16. PubMed ID: 7577962 [TBL] [Abstract][Full Text] [Related]
8. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers. Lee DW; Banquy X; Kristiansen K; Kaufman Y; Boggs JM; Israelachvili JN Proc Natl Acad Sci U S A; 2014 Feb; 111(8):E768-75. PubMed ID: 24516125 [TBL] [Abstract][Full Text] [Related]
9. Interaction forces and adhesion of supported myelin lipid bilayers modulated by myelin basic protein. Min Y; Kristiansen K; Boggs JM; Husted C; Zasadzinski JA; Israelachvili J Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3154-9. PubMed ID: 19218452 [TBL] [Abstract][Full Text] [Related]
10. Study by infrared spectroscopy of the interaction of bovine myelin basic protein with phosphatidic acid. Nabet A; Boggs JM; Pézolet M Biochemistry; 1994 Dec; 33(49):14792-9. PubMed ID: 7527658 [TBL] [Abstract][Full Text] [Related]
11. Correlation between surface morphology and surface forces of protein A adsorbed on mica. Ohnishi S; Murata M; Hato M Biophys J; 1998 Jan; 74(1):455-65. PubMed ID: 9449346 [TBL] [Abstract][Full Text] [Related]
12. Effect of phosphorylation of phosphatidylinositol on myelin basic protein-mediated binding of actin filaments to lipid bilayers in vitro. Boggs JM; Rangaraj G; Dicko A Biochim Biophys Acta; 2012 Sep; 1818(9):2217-27. PubMed ID: 22538354 [TBL] [Abstract][Full Text] [Related]
13. Following the formation of supported lipid bilayers on mica: a study combining AFM, QCM-D, and ellipsometry. Richter RP; Brisson AR Biophys J; 2005 May; 88(5):3422-33. PubMed ID: 15731391 [TBL] [Abstract][Full Text] [Related]
14. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study. Nussio MR; Oncins G; Ridelis I; Szili E; Shapter JG; Sanz F; Voelcker NH J Phys Chem B; 2009 Jul; 113(30):10339-47. PubMed ID: 19572625 [TBL] [Abstract][Full Text] [Related]
15. Supported Planar Single and Multiple Bilayer Formation by DOPC Vesicle Rupture on Mica Substrate: A Mechanism as Revealed by Atomic Force Microscopy Study. Basu A; Karmakar P; Karmakar S J Membr Biol; 2020 Jun; 253(3):205-219. PubMed ID: 32279087 [TBL] [Abstract][Full Text] [Related]
16. Relative surface charge density mapping with the atomic force microscope. Heinz WF; Hoh JH Biophys J; 1999 Jan; 76(1 Pt 1):528-38. PubMed ID: 9876166 [TBL] [Abstract][Full Text] [Related]
17. Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. Liang X; Mao G; Ng KY J Colloid Interface Sci; 2004 Oct; 278(1):53-62. PubMed ID: 15313637 [TBL] [Abstract][Full Text] [Related]
18. Probing small unilamellar EggPC vesicles on mica surface by atomic force microscopy. Liang X; Mao G; Simon Ng KY Colloids Surf B Biointerfaces; 2004 Mar; 34(1):41-51. PubMed ID: 15261089 [TBL] [Abstract][Full Text] [Related]
19. On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers. Richter RP; Him JL; Tessier B; Tessier C; Brisson AR Biophys J; 2005 Nov; 89(5):3372-85. PubMed ID: 16085777 [TBL] [Abstract][Full Text] [Related]
20. Real-time atomic force microscopy reveals cytochrome c-induced alterations in neutral lipid bilayers. Morandat S; El Kirat K Langmuir; 2007 Oct; 23(22):10929-32. PubMed ID: 17887784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]