BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 9916045)

  • 1. Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells.
    Cho MR; Knowles DW; Smith BL; Moulds JJ; Agre P; Mohandas N; Golan DE
    Biophys J; 1999 Feb; 76(2):1136-44. PubMed ID: 9916045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP regulated membrane diffusion of a green fluorescent protein-aquaporin 2 chimera.
    Umenishi F; Verbavatz JM; Verkman AS
    Biophys J; 2000 Feb; 78(2):1024-35. PubMed ID: 10653816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range nonanomalous diffusion of quantum dot-labeled aquaporin-1 water channels in the cell plasma membrane.
    Crane JM; Verkman AS
    Biophys J; 2008 Jan; 94(2):702-13. PubMed ID: 17890385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxygenation affects fluorescence photobleaching recovery measurements of red cell membrane protein lateral mobility.
    Corbett JD; Cho MR; Golan DE
    Biophys J; 1994 Jan; 66(1):25-30. PubMed ID: 8130343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first discovered water channel protein, later called aquaporin 1: molecular characteristics, functions and medical implications.
    Benga G
    Mol Aspects Med; 2012; 33(5-6):518-34. PubMed ID: 22705445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics of red cell aspiration by fluorescence-imaged microdeformation.
    Discher DE; Mohandas N
    Biophys J; 1996 Oct; 71(4):1680-94. PubMed ID: 8889146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aquaporin-2: COOH terminus is necessary but not sufficient for routing to the apical membrane.
    Deen PM; Van Balkom BW; Savelkoul PJ; Kamsteeg EJ; Van Raak M; Jennings ML; Muth TR; Rajendran V; Caplan MJ
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F330-40. PubMed ID: 11788448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane water influx via aquaporin-1 is inhibited by barbiturates and propofol in red blood cells.
    Voigtlaender J; Heindl B; Becker BF
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Sep; 366(3):209-17. PubMed ID: 12172703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential control of band 3 lateral and rotational mobility in intact red cells.
    Corbett JD; Agre P; Palek J; Golan DE
    J Clin Invest; 1994 Aug; 94(2):683-8. PubMed ID: 8040322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes.
    Yang B; Verkman AS
    J Biol Chem; 2002 Sep; 277(39):36782-6. PubMed ID: 12133842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptable interaction between aquaporin-1 and band 3 reveals a potential role of water channel in blood CO
    Hsu K; Lee TY; Periasamy A; Kao FJ; Li LT; Lin CY; Lin HJ; Lin M
    FASEB J; 2017 Oct; 31(10):4256-4264. PubMed ID: 28596233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of aquaporin-1 deficient red cells. The Colton-null phenotype.
    Mathai JC; Mori S; Smith BL; Preston GM; Mohandas N; Collins M; van Zijl PC; Zeidel ML; Agre P
    J Biol Chem; 1996 Jan; 271(3):1309-13. PubMed ID: 8576117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative action between band 3 and glycophorin A in human erythrocytes: immobilization of band 3 induced by antibodies to glycophorin A.
    Knowles DW; Chasis JA; Evans EA; Mohandas N
    Biophys J; 1994 May; 66(5):1726-32. PubMed ID: 8061221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement.
    Stamer WD; Bok D; Hu J; Jaffe GJ; McKay BS
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2803-8. PubMed ID: 12766090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The three-dimensional structure of aquaporin-1.
    Walz T; Hirai T; Murata K; Heymann JB; Mitsuoka K; Fujiyoshi Y; Smith BL; Agre P; Engel A
    Nature; 1997 Jun; 387(6633):624-7. PubMed ID: 9177353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular identification of functional water channel protein in cultured human nonpigmented ciliary epithelial cells.
    Han ZB; Yang JB; Wax MB; Patil RV
    Curr Eye Res; 2000 Mar; 20(3):242-7. PubMed ID: 10694901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral mobility of erythrocyte membrane proteins studied by the fluorescence photobleaching recovery technique.
    Chang CH; Takeuchi H; Ito T; Machida K; Ohnishi S
    J Biochem; 1981 Oct; 90(4):997-1004. PubMed ID: 6458603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary structures comparison of aquaporin-1 and bacteriorhodopsin: a Fourier transform infrared spectroscopy study of two-dimensional membrane crystals.
    Cabiaux V; Oberg KA; Pancoska P; Walz T; Agre P; Engel A
    Biophys J; 1997 Jul; 73(1):406-17. PubMed ID: 9199804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water and ion permeation of aquaporin-1 in planar lipid bilayers. Major differences in structural determinants and stoichiometry.
    Saparov SM; Kozono D; Rothe U; Agre P; Pohl P
    J Biol Chem; 2001 Aug; 276(34):31515-20. PubMed ID: 11410596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water channel (aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas.
    Endo M; Jain RK; Witwer B; Brown D
    Microvasc Res; 1999 Sep; 58(2):89-98. PubMed ID: 10458924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.