BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9916115)

  • 1. Isolation and characterization of rugose form of Vibrio cholerae O139 strain MO10.
    Mizunoe Y; Wai SN; Takade A; Yoshida SI
    Infect Immun; 1999 Feb; 67(2):958-63. PubMed ID: 9916115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation.
    Wai SN; Mizunoe Y; Takade A; Kawabata SI; Yoshida SI
    Appl Environ Microbiol; 1998 Oct; 64(10):3648-55. PubMed ID: 9758780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139.
    Watnick PI; Lauriano CM; Klose KE; Croal L; Kolter R
    Mol Microbiol; 2001 Jan; 39(2):223-35. PubMed ID: 11136445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological and physical characterization of the capsular layer of Vibrio cholerae O139.
    Meno Y; Waldor MK; Mekalanos JJ; Amako K
    Arch Microbiol; 1998 Oct; 170(5):339-44. PubMed ID: 9818353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron microscopic studies on Vibrio cholerae O139.
    Garg S; Ghosh AN; Mukhopadhyay AK; Nair GB
    Indian J Med Res; 1996 Jul; 104():134-8. PubMed ID: 8783516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae.
    Fong JC; Karplus K; Schoolnik GK; Yildiz FH
    J Bacteriol; 2006 Feb; 188(3):1049-59. PubMed ID: 16428409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation.
    Yildiz FH; Schoolnik GK
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):4028-33. PubMed ID: 10097157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency rugose exopolysaccharide production by Vibrio cholerae.
    Ali A; Rashid MH; Karaolis DK
    Appl Environ Microbiol; 2002 Nov; 68(11):5773-8. PubMed ID: 12406780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of the properties of Vibrio cholerae O139, O1 and other non-O1 strains.
    Nandy RK; Sengupta TK; Mukhopadhyay S; Ghose AC
    J Med Microbiol; 1995 Apr; 42(4):251-7. PubMed ID: 7707332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mannose-containing oligosaccharides of non-specific human secretory immunoglobulin A mediate inhibition of Vibrio cholerae biofilm formation.
    Murthy AK; Chaganty BK; Troutman T; Guentzel MN; Yu JJ; Ali SK; Lauriano CM; Chambers JP; Klose KE; Arulanandam BP
    PLoS One; 2011 Feb; 6(2):e16847. PubMed ID: 21347387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural studies on the short-chain lipopolysaccharide of Vibrio cholerae O139 Bengal.
    Knirel YA; Widmalm G; Senchenkova SN; Jansson PE; Weintraub A
    Eur J Biochem; 1997 Jul; 247(1):402-10. PubMed ID: 9249053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae.
    Fong JC; Yildiz FH
    J Bacteriol; 2007 Mar; 189(6):2319-30. PubMed ID: 17220218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates.
    Singh DV; Matte MH; Matte GR; Jiang S; Sabeena F; Shukla BN; Sanyal SC; Huq A; Colwell RR
    Appl Environ Microbiol; 2001 Feb; 67(2):910-21. PubMed ID: 11157262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae.
    Rashid MH; Rajanna C; Ali A; Karaolis DK
    FEMS Microbiol Lett; 2003 Oct; 227(1):113-9. PubMed ID: 14568156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quorum Sensing Autoinducer(s) and Flagellum Independently Mediate EPS Signaling in Vibrio cholerae Through LuxO-Independent Mechanism.
    Biswas S; Mukherjee P; Manna T; Dutta K; Guchhait KC; Karmakar A; Karmakar M; Dua P; Panda AK; Ghosh C
    Microb Ecol; 2019 Apr; 77(3):616-630. PubMed ID: 30218129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viability of the nonculturable Vibrio cholerae O1 and O139.
    Chaiyanan S; Chaiyanan S; Huq A; Maugel T; Colwell RR
    Syst Appl Microbiol; 2001 Nov; 24(3):331-41. PubMed ID: 11822667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency rugose exopolysaccharide production by Vibrio cholerae strains isolated in Haiti.
    Rahman M; Jubair M; Alam MT; Weppelmann TA; Azarian T; Salemi M; Sakharuk IA; Rashid MH; Johnson JA; Yasmin M; Morris JG; Ali A
    PLoS One; 2014; 9(11):e112853. PubMed ID: 25390633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of mechanical properties of V. cholerae biofilms at the air-liquid interface.
    Hollenbeck EC; Fong JC; Lim JY; Yildiz FH; Fuller GG; Cegelski L
    Biophys J; 2014 Nov; 107(10):2245-52. PubMed ID: 25418293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence and molecular characterization of Vibrio cholerae O1, non-O1 and non-O139 in tropical seafood in Cochin, India.
    Kumar R; Lalitha KV
    Foodborne Pathog Dis; 2013 Mar; 10(3):278-83. PubMed ID: 23489050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh.
    Islam MS; Jahid MI; Rahman MM; Rahman MZ; Islam MS; Kabir MS; Sack DA; Schoolnik GK
    Microbiol Immunol; 2007; 51(4):369-79. PubMed ID: 17446676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.