These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9916453)

  • 1. [Detection of lead in environmental objects and biologic materials during monitoring].
    Liapunov SM; Seregina IF; Okina OI; Golubchikov VV; Kislova IV; Kistanov AA; Shevchenko EP; Sorokina NM
    Med Tr Prom Ekol; 1998; (12):37-44. PubMed ID: 9916453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples.
    Clark S; Menrath W; Chen M; Roda S; Succop P
    Ann Agric Environ Med; 1999; 6(1):27-32. PubMed ID: 10384212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.
    Radu T; Diamond D
    J Hazard Mater; 2009 Nov; 171(1-3):1168-71. PubMed ID: 19595504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Selection of matrix modifier for GF-AAS determination of trace lead in soil watered with waste water and its application].
    Shawket A; Saniya T; Abliz Y; Wang JD; Shi RF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1410-2. PubMed ID: 18800737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental lead contamination in the Rudnaya Pristan--Dalnegorsk mining and smelter district, Russian far East.
    von Braun MC; von Lindern IH; Khristoforova NK; Kachur AH; Yelpatyevsky PV; Elpatyevskaya VP; Spalinger SM
    Environ Res; 2002 Mar; 88(3):164-73. PubMed ID: 12051794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lead isotopic assessment of tree bark as a biomonitor of contemporary atmospheric lead.
    Patrick GJ; Farmer JG
    Sci Total Environ; 2007 Dec; 388(1-3):343-56. PubMed ID: 17727921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design.
    Clark HF; Hausladen DM; Brabander DJ
    Environ Res; 2008 Jul; 107(3):312-9. PubMed ID: 18456252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [General assessment of toxicologic hazards caused by lead in Poland].
    Med Pr; 1993; 44(5):499-507. PubMed ID: 8107565
    [No Abstract]   [Full Text] [Related]  

  • 9. Analysis and reduction of the uncertainty of the assessment of children's lead exposure around an old mine.
    Glorennec P
    Environ Res; 2006 Feb; 100(2):150-8. PubMed ID: 16442994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lead and cadmium in indoor air and the urban environment.
    Komarnicki GJ
    Environ Pollut; 2005 Jul; 136(1):47-61. PubMed ID: 15809107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Determining the levels of benazol II in environmental objects].
    Fazlieva FM; Driuchina NN
    Gig Sanit; 1991 Mar; (3):82-3. PubMed ID: 1832128
    [No Abstract]   [Full Text] [Related]  

  • 12. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.
    Harper M; Pacolay B; Hintz P; Andrew ME
    J Environ Monit; 2006 Mar; 8(3):384-92. PubMed ID: 16528423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of pesticide emission fluxes from canopy using micrometeorological methods.
    De Backer E; Samson R; Steurbaut W
    Commun Agric Appl Biol Sci; 2006; 71(1):103-6. PubMed ID: 17191484
    [No Abstract]   [Full Text] [Related]  

  • 14. Methods to reduce the emission of pesticides on farm level.
    Spanoghe P; Steurbaut W
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):849-53. PubMed ID: 15151323
    [No Abstract]   [Full Text] [Related]  

  • 15. Automatic on-line pre-concentration system using a knotted reactor for the FAAS determination of lead in drinking water.
    Souza AS; Brandão GC; dos Santos WN; Lemos VA; Ganzarolli EM; Bruns RE; Ferreira SL
    J Hazard Mater; 2007 Mar; 141(3):540-5. PubMed ID: 16956723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the feasibility of using a portable X-ray fluorescence (XRF) analyzer in the field for measurement of lead content of sieved soil.
    Markey AM; Clark CS; Succop PA; Roda S
    J Environ Health; 2008 Mar; 70(7):24-9; quiz 55-6. PubMed ID: 18348388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Chemicals in ecosystems. Inventory, evaluation and application of distribution models].
    Figge K; Klahn J; Koch J
    Schriftenr Ver Wasser Boden Lufthyg; 1985; 61():1-234. PubMed ID: 4048872
    [No Abstract]   [Full Text] [Related]  

  • 18. Probabilistic modeling of young children's overall lead exposure in France: integrated approach for various exposure media.
    Glorennec P; Bemrah N; Tard A; Robin A; Le Bot B; Bard D
    Environ Int; 2007 Oct; 33(7):937-45. PubMed ID: 17573113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses.
    Kilbride C; Poole J; Hutchings TR
    Environ Pollut; 2006 Sep; 143(1):16-23. PubMed ID: 16406626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risks to children from exposure to lead in air during remedial or removal activities at Superfund sites: a case study of the RSR lead smelter Superfund site.
    Khoury GA; Diamond GL
    J Expo Anal Environ Epidemiol; 2003 Jan; 13(1):51-65. PubMed ID: 12595884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.