BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 99167)

  • 1. Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation. Correlation with lipid compositional and ultrastructural changes.
    Martin CE; Thompson GA
    Biochemistry; 1978 Aug; 17(17):3581-6. PubMed ID: 99167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational relaxation of 1,6-diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures.
    Martin CE; Foyt DC
    Biochemistry; 1978 Aug; 17(17):3587-91. PubMed ID: 99168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discontinuous thermotropic response of Tetrahymena membrane lipids correlated with specific lipid compositional changes.
    Dickens BF; Martin CE; King GP; Turner JS; Thompson GA
    Biochim Biophys Acta; 1980 May; 598(2):217-36. PubMed ID: 6769483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid membrane response during low-temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes.
    Dickens BF; Thompson GA
    Biochim Biophys Acta; 1981 Jun; 644(2):211-8. PubMed ID: 6789874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity.
    Kameyama Y; Ohki K; Nozawa Y
    J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. Role of cardiolipin in fluidity of mitochondrial membranes.
    Yamauchi T; Ohki K; Maruyama H; Nozawa Y
    Biochim Biophys Acta; 1981 Dec; 649(2):385-92. PubMed ID: 6797472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diphenylhexatriene and pyrene as tools for characterization of biological membranes.
    Boldyrev AA; Lopina OD; Prokopjeva VD
    Biochem Int; 1984 Jun; 8(6):851-9. PubMed ID: 6477633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in thermal phase transition of various membranes during temperature acclimation in Tetrahymena.
    Nakayama H; Ohki K; Mitsui T; Nozawa Y
    Biochim Biophys Acta; 1984 Jan; 769(2):311-6. PubMed ID: 6320873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane changes during growth of Tetrahymena in the presence of ethanol.
    Nandini-Kishore SG; Mattox SM; Martin CE; Thompson GA
    Biochim Biophys Acta; 1979 Mar; 551(2):315-27. PubMed ID: 105757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermotropic lipid clustering in tetrahymena membranes.
    Wunderlich F; Ronai A; Speth V; Seelig J; Blume A
    Biochemistry; 1975 Aug; 14(17):3730-5. PubMed ID: 169883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on Tetrahymena membranes: temperature-induced alterations in fatty acid composition of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spin-label study.
    Nozawa Y; Iida H; Fukushima H; Oki K; Onishi S
    Biochim Biophys Acta; 1974 Oct; 367(2):134-47. PubMed ID: 4371832
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells.
    Martin CE; Hiramitsu K; Kitajima Y; Nozawa Y; Skriver L; Thompson GA
    Biochemistry; 1976 Nov; 15(24):5218-27. PubMed ID: 826266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence.
    Kitajima Y; Thompson GA
    J Cell Biol; 1977 Mar; 72(3):744-55. PubMed ID: 402370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fatty acid deficiency on the lipid composition and physical properties of guinea pig rough endoplasmic reticulum.
    Soulages JL; Brenner RR
    Mol Cell Biochem; 1987 Dec; 78(2):109-19. PubMed ID: 3441250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. II. Preferential interaction of cardiolipin with specific molecular species of phospholipid.
    Ohki K; Goto M; Nozawa Y
    Biochim Biophys Acta; 1984 Feb; 769(3):563-70. PubMed ID: 6421321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-induced vertical shift of proteins in membranes.
    Funk J; Wunderlich F; Kreutz W
    J Mol Biol; 1982 Nov; 161(4):561-77. PubMed ID: 6818355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid molecular species alterations in Tetrahymena ciliary membranes following low-temperature acclimation.
    Ramesha CS; Dickens BF; Thompson GA
    Biochemistry; 1982 Jul; 21(15):3618-22. PubMed ID: 6810928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of growth at different temperatures on the physical state of lipids in native microsomal membranes from Tetrahymena.
    Dickens BF; Thompson GA
    Biochemistry; 1980 Oct; 19(22):5029-37. PubMed ID: 6779861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on tetrahymena membranes. Modification of surface membrane lipids by replacement of tetrahymanol by exogenous ergosterol in Tetrahymena pyriformis.
    Nozawa Y; Fukushima H; Iida H
    Biochim Biophys Acta; 1975 Oct; 406(2):248-63. PubMed ID: 811256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on thermal adaptation in Tetrahymena membrane lipids. Modification of positional distribution of phospholipid acyl chains in plasma membranes, mitochondria and microsomes.
    Maruyama H; Banno Y; Watanabe T; Nozawa Y
    Biochim Biophys Acta; 1982 May; 711(2):229-44. PubMed ID: 6807352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.