These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 99167)
1. Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation. Correlation with lipid compositional and ultrastructural changes. Martin CE; Thompson GA Biochemistry; 1978 Aug; 17(17):3581-6. PubMed ID: 99167 [TBL] [Abstract][Full Text] [Related]
2. Rotational relaxation of 1,6-diphenylhexatriene in membrane lipids of cells acclimated to high and low growth temperatures. Martin CE; Foyt DC Biochemistry; 1978 Aug; 17(17):3587-91. PubMed ID: 99168 [TBL] [Abstract][Full Text] [Related]
3. Discontinuous thermotropic response of Tetrahymena membrane lipids correlated with specific lipid compositional changes. Dickens BF; Martin CE; King GP; Turner JS; Thompson GA Biochim Biophys Acta; 1980 May; 598(2):217-36. PubMed ID: 6769483 [TBL] [Abstract][Full Text] [Related]
4. Rapid membrane response during low-temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes. Dickens BF; Thompson GA Biochim Biophys Acta; 1981 Jun; 644(2):211-8. PubMed ID: 6789874 [TBL] [Abstract][Full Text] [Related]
5. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity. Kameyama Y; Ohki K; Nozawa Y J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538 [TBL] [Abstract][Full Text] [Related]
6. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. Role of cardiolipin in fluidity of mitochondrial membranes. Yamauchi T; Ohki K; Maruyama H; Nozawa Y Biochim Biophys Acta; 1981 Dec; 649(2):385-92. PubMed ID: 6797472 [TBL] [Abstract][Full Text] [Related]
7. Diphenylhexatriene and pyrene as tools for characterization of biological membranes. Boldyrev AA; Lopina OD; Prokopjeva VD Biochem Int; 1984 Jun; 8(6):851-9. PubMed ID: 6477633 [TBL] [Abstract][Full Text] [Related]
8. Changes in thermal phase transition of various membranes during temperature acclimation in Tetrahymena. Nakayama H; Ohki K; Mitsui T; Nozawa Y Biochim Biophys Acta; 1984 Jan; 769(2):311-6. PubMed ID: 6320873 [TBL] [Abstract][Full Text] [Related]
9. Membrane changes during growth of Tetrahymena in the presence of ethanol. Nandini-Kishore SG; Mattox SM; Martin CE; Thompson GA Biochim Biophys Acta; 1979 Mar; 551(2):315-27. PubMed ID: 105757 [TBL] [Abstract][Full Text] [Related]
11. Studies on Tetrahymena membranes: temperature-induced alterations in fatty acid composition of various membrane fractions in Tetrahymena pyriformis and its effect on membrane fluidity as inferred by spin-label study. Nozawa Y; Iida H; Fukushima H; Oki K; Onishi S Biochim Biophys Acta; 1974 Oct; 367(2):134-47. PubMed ID: 4371832 [No Abstract] [Full Text] [Related]
12. Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells. Martin CE; Hiramitsu K; Kitajima Y; Nozawa Y; Skriver L; Thompson GA Biochemistry; 1976 Nov; 15(24):5218-27. PubMed ID: 826266 [TBL] [Abstract][Full Text] [Related]
13. Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence. Kitajima Y; Thompson GA J Cell Biol; 1977 Mar; 72(3):744-55. PubMed ID: 402370 [TBL] [Abstract][Full Text] [Related]
14. Effects of fatty acid deficiency on the lipid composition and physical properties of guinea pig rough endoplasmic reticulum. Soulages JL; Brenner RR Mol Cell Biochem; 1987 Dec; 78(2):109-19. PubMed ID: 3441250 [TBL] [Abstract][Full Text] [Related]
15. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. II. Preferential interaction of cardiolipin with specific molecular species of phospholipid. Ohki K; Goto M; Nozawa Y Biochim Biophys Acta; 1984 Feb; 769(3):563-70. PubMed ID: 6421321 [TBL] [Abstract][Full Text] [Related]
16. Temperature-induced vertical shift of proteins in membranes. Funk J; Wunderlich F; Kreutz W J Mol Biol; 1982 Nov; 161(4):561-77. PubMed ID: 6818355 [TBL] [Abstract][Full Text] [Related]
17. Phospholipid molecular species alterations in Tetrahymena ciliary membranes following low-temperature acclimation. Ramesha CS; Dickens BF; Thompson GA Biochemistry; 1982 Jul; 21(15):3618-22. PubMed ID: 6810928 [TBL] [Abstract][Full Text] [Related]
18. Effects of growth at different temperatures on the physical state of lipids in native microsomal membranes from Tetrahymena. Dickens BF; Thompson GA Biochemistry; 1980 Oct; 19(22):5029-37. PubMed ID: 6779861 [TBL] [Abstract][Full Text] [Related]
19. Studies on tetrahymena membranes. Modification of surface membrane lipids by replacement of tetrahymanol by exogenous ergosterol in Tetrahymena pyriformis. Nozawa Y; Fukushima H; Iida H Biochim Biophys Acta; 1975 Oct; 406(2):248-63. PubMed ID: 811256 [TBL] [Abstract][Full Text] [Related]
20. Studies on thermal adaptation in Tetrahymena membrane lipids. Modification of positional distribution of phospholipid acyl chains in plasma membranes, mitochondria and microsomes. Maruyama H; Banno Y; Watanabe T; Nozawa Y Biochim Biophys Acta; 1982 May; 711(2):229-44. PubMed ID: 6807352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]