BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9916798)

  • 1. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel.
    Matsumura Y; Uchida S; Kondo Y; Miyazaki H; Ko SB; Hayama A; Morimoto T; Liu W; Arisawa M; Sasaki S; Marumo F
    Nat Genet; 1999 Jan; 21(1):95-8. PubMed ID: 9916798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Severely impaired urine-concentrating ability in mice lacking the CLC-K1 chloride channel.
    Uchida S; Marumo F
    Exp Nephrol; 2000; 8(6):361-5. PubMed ID: 11014933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired solute accumulation in inner medulla of Clcnk1-/- mice kidney.
    Akizuki N; Uchida S; Sasaki S; Marumo F
    Am J Physiol Renal Physiol; 2001 Jan; 280(1):F79-87. PubMed ID: 11133517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of NaCl transport in thin ascending limb of Henle's loop in CLC-K1 null mice.
    Liu W; Morimoto T; Kondo Y; Iinuma K; Uchida S; Sasaki S; Marumo F; Imai M
    Am J Physiol Renal Physiol; 2002 Mar; 282(3):F451-7. PubMed ID: 11832425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Water metabolism and its disturbances].
    Shoji M; Yasujima M
    Rinsho Byori; 1999 Dec; 47(12):1121-7. PubMed ID: 10639821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological role of CLC-K1 chloride channel in the kidney.
    Uchida S
    Nephrol Dial Transplant; 2000; 15 Suppl 6():14-5. PubMed ID: 11143973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and analyses of R8L barttin knockin mouse.
    Nomura N; Tajima M; Sugawara N; Morimoto T; Kondo Y; Ohno M; Uchida K; Mutig K; Bachmann S; Soleimani M; Ohta E; Ohta A; Sohara E; Okado T; Rai T; Jentsch TJ; Sasaki S; Uchida S
    Am J Physiol Renal Physiol; 2011 Aug; 301(2):F297-307. PubMed ID: 21593186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of Disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance.
    Krämer BK; Bergler T; Stoelcker B; Waldegger S
    Nat Clin Pract Nephrol; 2008 Jan; 4(1):38-46. PubMed ID: 18094726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo role of CLC chloride channels in the kidney.
    Uchida S
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F802-8. PubMed ID: 11053039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization and functional characterization of rat kidney-specific chloride channel, ClC-K1.
    Uchida S; Sasaki S; Nitta K; Uchida K; Horita S; Nihei H; Marumo F
    J Clin Invest; 1995 Jan; 95(1):104-13. PubMed ID: 7814604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The clinical physiology of water metabolism. Part II: Renal mechanisms for urinary concentration; diabetes insipidus.
    Weitzman RE; Kleeman CR
    West J Med; 1979 Dec; 131(6):486-515. PubMed ID: 545867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Function of the CLC chloride channels and their implication in human pathology].
    Vandewalle A
    Nephrologie; 2002; 23(3):113-8. PubMed ID: 12087807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kidney kinetics and chloride ion pumps.
    Kere J
    Nat Genet; 1999 Jan; 21(1):67-8. PubMed ID: 9916791
    [No Abstract]   [Full Text] [Related]  

  • 14. Parallel down-regulation of chloride channel CLC-K1 and barttin mRNA in the thin ascending limb of the rat nephron by furosemide.
    Wolf K; Meier-Meitinger M; Bergler T; Castrop H; Vitzthum H; Riegger GA; Kurtz A; Krämer BK
    Pflugers Arch; 2003 Sep; 446(6):665-71. PubMed ID: 12759757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium and calcimimetics regulate paracellular Na+ transport in the thin ascending limb of Henle's loop in mouse kidney.
    Sugawara N; Morimoto T; Farajov EI; Kumagai N; Aslanova UF; Rai T; Uchida S; Sasaki S; Tsuchiya S; Kondo Y
    Pflugers Arch; 2010 Jun; 460(1):197-205. PubMed ID: 20396899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.
    Vandewalle A
    Chang Gung Med J; 2007; 30(1):17-25. PubMed ID: 17477025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney.
    Adachi S; Uchida S; Ito H; Hata M; Hiroe M; Marumo F; Sasaki S
    J Biol Chem; 1994 Jul; 269(26):17677-83. PubMed ID: 8021279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ClC-5 chloride channel knock-out mouse - an animal model for Dent's disease.
    Günther W; Piwon N; Jentsch TJ
    Pflugers Arch; 2003 Jan; 445(4):456-62. PubMed ID: 12548389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrarenal and cellular localization of CLC-K2 protein in the mouse kidney.
    Kobayashi K; Uchida S; Mizutani S; Sasaki S; Marumo F
    J Am Soc Nephrol; 2001 Jul; 12(7):1327-1334. PubMed ID: 11423561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquaporin 2 mutations in nephrogenic diabetes insipidus.
    Loonen AJ; Knoers NV; van Os CH; Deen PM
    Semin Nephrol; 2008 May; 28(3):252-65. PubMed ID: 18519086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.