BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 99169)

  • 1. On the state of carotenoids bound to reaction centers of photosynthetic bacteria: a resonance Raman study.
    Lutz M; Agalidis I; Hervo G; Cogdell RJ; Reiss-Husson F
    Biochim Biophys Acta; 1978 Aug; 503(2):287-303. PubMed ID: 99169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of carotenoids on reaction centers from Rhodopseudomonas sphaeroides R 26.
    Agalidis I; Lutz M; Reiss-Husson F
    Biochim Biophys Acta; 1980 Feb; 589(2):264-74. PubMed ID: 6986910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
    Cogdell RJ; Monger TG; Parson WW
    Biochim Biophys Acta; 1975 Dec; 408(3):189-99. PubMed ID: 811259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-enhanced Raman scattering spectroscopy of photosynthetic membranes and complexes.
    Seibert M; Picorel R; Kim JH; Cotton TM
    Methods Enzymol; 1992; 213():31-42. PubMed ID: 1435308
    [No Abstract]   [Full Text] [Related]  

  • 5. Changes in the acyl lipid composition of photosynthetic bacteria grown under photosynthetic and non-photosynthetic conditions.
    Russell NJ; Harwood JL
    Biochem J; 1979 Aug; 181(2):339-45. PubMed ID: 115463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STUDIES ON LIGHT-INDUCED INHIBITION OF RESPIRATION IN PURPLE BACTERIA: ACTION SPECTRA FOR RHODOSPIRILLUM RUBRUM AND RHODOPSEUDOMONAS SPHEROIDES.
    FORK DC; GOEDHEER JC
    Biochim Biophys Acta; 1964 Mar; 79():249-56. PubMed ID: 14163510
    [No Abstract]   [Full Text] [Related]  

  • 7. Flash-induced changes in the in vivo bacteriochlorophyll fluorescence yield at low temperatures and low redox potentials in carotenoid-containing strains of photosynthetic bacteria.
    Holmes NG; van Grondelle R; Duysens LN
    Biochim Biophys Acta; 1978 Jul; 503(1):26-36. PubMed ID: 96856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria.
    Aagaard J; Sistrom WR
    Photochem Photobiol; 1972 Feb; 15(2):209-25. PubMed ID: 4621847
    [No Abstract]   [Full Text] [Related]  

  • 9. Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal B1 in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Hsi ES; Bolton JR
    Biochim Biophys Acta; 1974 Apr; 347(1):126-33. PubMed ID: 4373063
    [No Abstract]   [Full Text] [Related]  

  • 10. [Influence of 2-hydroxybiphenyl on carotenogenesis in rhodospseudomonas spheroides and Rhodospirillum].
    Maudinas B; Herber R; Villoutreix J; Granger P
    Biochimie; 1972; 54(8):1085-8. PubMed ID: 4631864
    [No Abstract]   [Full Text] [Related]  

  • 11. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. II. Comparison of diffraction patterns of photosynthetic units from various purple bacteria.
    Kataoka M; Inai K; Ueki T; Yamashita J
    J Biochem; 1984 Feb; 95(2):567-73. PubMed ID: 6425275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of populating and depopulating of the components of the photoinduced triplet state of the photosynthetic bacteria Rhodospirillum rubrum, Rhodopseudomonas spheroides (wild type), and its mutant R-26 as measured by ESR in zero-field.
    Hoff AJ
    Biochim Biophys Acta; 1976 Sep; 440(3):765-71. PubMed ID: 183816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purple-bacterial light-harvesting complexes.
    Cogdell RJ
    Biochem Soc Trans; 1986 Feb; 14(1):4-5. PubMed ID: 3082693
    [No Abstract]   [Full Text] [Related]  

  • 14. [Use of urea by purple bacteria].
    Malofeeva IV
    Mikrobiologiia; 1979; 48(3):411-7. PubMed ID: 112359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: the symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26.
    Norris JR; Budil DE; Gast P; Chang CH; el-Kabbani O; Schiffer M
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4335-9. PubMed ID: 2543969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [ON THE MORPHOGENESIS OF BACTERIAL "CHROMATOPHORES" (THYLAKOIDS) AND ON THE SYNTHESIS OF BACTERIOCHLOROPHYLL IN RHODOPSEUDOMONAS SPHEROIDES AND RHODOSPIRILLUM RUBRUM].
    DREWS G; GIESBRECHT P
    Zentralbl Bakteriol Orig; 1963 Dec; 190():508-35. PubMed ID: 14166428
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies in carotenogenesis. 23. The nature of the carotenoids in the photosynthetic bacterium Rhodopseudomonas spheroides (athiorhodaceae).
    GOODWIN TW; LAND DG; SISSINS ME
    Biochem J; 1956 Nov; 64(3):486-92. PubMed ID: 13373799
    [No Abstract]   [Full Text] [Related]  

  • 18. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria.
    Berne C; Allainmat B; Garcia D
    Biotechnol Lett; 2005 Apr; 27(8):561-6. PubMed ID: 15973490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosecond fluorescence from chromatophores of Rhodopseudomonas sphaeroides and Rhodospirillum rubrum.
    Woodbury NW; Parson WW
    Biochim Biophys Acta; 1986 Jul; 850(2):197-210. PubMed ID: 3087422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of reduction of the ubiquinone pool in photosynthetic bacteria at different redox potentials.
    de Grooth BG; van Grondelle R; Romijn JC; Pulles MP
    Biochim Biophys Acta; 1978 Sep; 503(3):480-90. PubMed ID: 99172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.