These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 9917410)

  • 1. Native Escherichia coli and murine dihydrofolate reductases contain late-folding non-native structures.
    Clark AC; Frieden C
    J Mol Biol; 1999 Jan; 285(4):1765-76. PubMed ID: 9917410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chaperonin GroEL binds to late-folding non-native conformations present in native Escherichia coli and murine dihydrofolate reductases.
    Clark AC; Frieden C
    J Mol Biol; 1999 Jan; 285(4):1777-88. PubMed ID: 9917411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GroEL-mediated folding of structurally homologous dihydrofolate reductases.
    Clark AC; Frieden C
    J Mol Biol; 1997 May; 268(2):512-25. PubMed ID: 9159487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclophilin-promoted folding of mouse dihydrofolate reductase does not include the slow conversion of the late-folding intermediate to the active enzyme.
    von Ahsen O; Lim JH; Caspers P; Martin F; Schönfeld HJ; Rassow J; Pfanner N
    J Mol Biol; 2000 Mar; 297(3):809-18. PubMed ID: 10731431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: haloadaptation by unfolded state destabilization at high ionic strength.
    Gloss LM; Topping TB; Binder AK; Lohman JR
    J Mol Biol; 2008 Mar; 376(5):1451-62. PubMed ID: 18207162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
    Clark AC; Hugo E; Frieden C
    Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly divergent dihydrofolate reductases conserve complex folding mechanisms.
    Wallace LA; Robert Matthews C
    J Mol Biol; 2002 Jan; 315(2):193-211. PubMed ID: 11779239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy.
    Hoeltzli SD; Frieden C
    Biochemistry; 1996 Dec; 35(51):16843-51. PubMed ID: 8988023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles.
    Ionescu RM; Smith VF; O'Neill JC; Matthews CR
    Biochemistry; 2000 Aug; 39(31):9540-50. PubMed ID: 10924151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic circular permutation of an entire protein reveals essential folding elements.
    Iwakura M; Nakamura T; Yamane C; Maki K
    Nat Struct Biol; 2000 Jul; 7(7):580-5. PubMed ID: 10876245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coordination of the isomerization of a conserved non-prolyl cis peptide bond with the rate-limiting steps in the folding of dihydrofolate reductase.
    Svensson AK; O'Neill JC; Matthews CR
    J Mol Biol; 2003 Feb; 326(2):569-83. PubMed ID: 12559923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand binding to a high-energy partially unfolded protein.
    Kasper JR; Park C
    Protein Sci; 2015 Jan; 24(1):129-37. PubMed ID: 25367157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching sequence space: two different approaches to dihydrofolate reductase catalysis.
    Howell EE
    Chembiochem; 2005 Apr; 6(4):590-600. PubMed ID: 15812782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refolding of Escherichia coli dihydrofolate reductase: sequential formation of substrate binding sites.
    Frieden C
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4413-6. PubMed ID: 2191290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the interactions between the folding elements early in the folding of Escherichia coli dihydrofolate reductase by systematic sequence perturbation analysis.
    Arai M; Iwakura M
    J Mol Biol; 2005 Mar; 347(2):337-53. PubMed ID: 15740745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.
    Gloss LM; Simler BR; Matthews CR
    J Mol Biol; 2001 Oct; 312(5):1121-34. PubMed ID: 11580254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance.
    Swanwick RS; Shrimpton PJ; Allemann RK
    Biochemistry; 2004 Apr; 43(14):4119-27. PubMed ID: 15065854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.