These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 9917414)
1. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. de Bakker PI; Hünenberger PH; McCammon JA J Mol Biol; 1999 Jan; 285(4):1811-30. PubMed ID: 9917414 [TBL] [Abstract][Full Text] [Related]
2. Structural and energetic determinants of thermal stability and hierarchical unfolding pathways of hyperthermophilic proteins, Sac7d and Sso7d. Priyakumar UD; Ramakrishna S; Nagarjuna KR; Reddy SK J Phys Chem B; 2010 Feb; 114(4):1707-18. PubMed ID: 20055363 [TBL] [Abstract][Full Text] [Related]
3. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. Elcock AH J Mol Biol; 1998 Nov; 284(2):489-502. PubMed ID: 9813132 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of core hydrophobicity and packing in the hyperthermophile proteins Sac7d and Sso7d. Clark AT; McCrary BS; Edmondson SP; Shriver JW Biochemistry; 2004 Mar; 43(10):2840-53. PubMed ID: 15005619 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations of a hyperthermophilic and a mesophilic protein L30e. Lee KJ J Chem Inf Model; 2012 Jan; 52(1):7-15. PubMed ID: 22168407 [TBL] [Abstract][Full Text] [Related]
7. Molecular simulations on the thermal stabilization of DNA by hyperthermophilic chromatin protein Sac7d, and associated conformational transitions. Priyakumar UD; Harika G; Suresh G J Phys Chem B; 2010 Dec; 114(49):16548-57. PubMed ID: 21086967 [TBL] [Abstract][Full Text] [Related]
8. Linkage of protonation and anion binding to the folding of Sac7d. McCrary BS; Bedell J; Edmondson SP; Shriver JW J Mol Biol; 1998 Feb; 276(1):203-24. PubMed ID: 9514720 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges. Albeck S; Unger R; Schreiber G J Mol Biol; 2000 May; 298(3):503-20. PubMed ID: 10772866 [TBL] [Abstract][Full Text] [Related]
10. Dynamics and unfolding pathways of a hyperthermophilic and a mesophilic rubredoxin. Lazaridis T; Lee I; Karplus M Protein Sci; 1997 Dec; 6(12):2589-605. PubMed ID: 9416608 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d. Peters WB; Edmondson SP; Shriver JW J Mol Biol; 2004 Oct; 343(2):339-60. PubMed ID: 15451665 [TBL] [Abstract][Full Text] [Related]
12. The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Gao YG; Su SY; Robinson H; Padmanabhan S; Lim L; McCrary BS; Edmondson SP; Shriver JW; Wang AH Nat Struct Biol; 1998 Sep; 5(9):782-6. PubMed ID: 9731772 [TBL] [Abstract][Full Text] [Related]
13. Role of a surface tryptophan in defining the structure, stability, and DNA binding of the hyperthermophile protein Sac7d. Bedell JL; Edmondson SP; Shriver JW Biochemistry; 2005 Jan; 44(3):915-25. PubMed ID: 15654747 [TBL] [Abstract][Full Text] [Related]
14. Structures of the hyperthermophilic chromosomal protein Sac7d in complex with DNA decamers. Ko TP; Chu HM; Chen CY; Chou CC; Wang AH Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1381-7. PubMed ID: 15272160 [TBL] [Abstract][Full Text] [Related]
15. Dynamic arrangement of ion pairs and individual contributions to the thermal stability of the cofactor-binding domain of glutamate dehydrogenase from Thermotoga maritima. Danciulescu C; Ladenstein R; Nilsson L Biochemistry; 2007 Jul; 46(29):8537-49. PubMed ID: 17602502 [TBL] [Abstract][Full Text] [Related]
16. Stability and flexibility in the structure of the hyperthermophile DNA-binding protein Sac7d. Kahsai MA; Martin E; Edmondson SP; Shriver JW Biochemistry; 2005 Oct; 44(41):13500-9. PubMed ID: 16216073 [TBL] [Abstract][Full Text] [Related]
17. Salt bridge stability in monomeric proteins. Kumar S; Nussinov R J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of the chromosomal proteins Sso7d/Sac7d bound to DNA containing T-G mismatched base-pairs. Su S; Gao YG; Robinson H; Liaw YC; Edmondson SP; Shriver JW; Wang AH J Mol Biol; 2000 Oct; 303(3):395-403. PubMed ID: 11031116 [TBL] [Abstract][Full Text] [Related]
19. Structural and dynamic effects of alpha-helix deletion in Sso7d: implications for protein thermal stability. Merlino A; Graziano G; Mazzarella L Proteins; 2004 Dec; 57(4):692-701. PubMed ID: 15317021 [TBL] [Abstract][Full Text] [Related]
20. Effect of mutation of the Sac7d intercalating residues on the temperature dependence of DNA distortion and binding thermodynamics. Peters WB; Edmondson SP; Shriver JW Biochemistry; 2005 Mar; 44(12):4794-804. PubMed ID: 15779906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]