These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 9917414)

  • 21. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies.
    McAfee JG; Edmondson SP; Zegar I; Shriver JW
    Biochemistry; 1996 Apr; 35(13):4034-45. PubMed ID: 8672437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature range of thermodynamic stability for the native state of reversible two-state proteins.
    Kumar S; Tsai CJ; Nussinov R
    Biochemistry; 2003 May; 42(17):4864-73. PubMed ID: 12718527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salt bridges in the hyperthermophilic protein Ssh10b are resilient to temperature increases.
    Ge M; Xia XY; Pan XM
    J Biol Chem; 2008 Nov; 283(46):31690-6. PubMed ID: 18779322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structure, stability, and nucleic acid binding of the hyperthermophile protein Sso10b2.
    Biyani K; Kahsai MA; Clark AT; Armstrong TL; Edmondson SP; Shriver JW
    Biochemistry; 2005 Nov; 44(43):14217-30. PubMed ID: 16245938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of salt bridges in homeodomains investigated by structural analyses and molecular dynamics simulations.
    Iurcu-Mustata G; Van Belle D; Wintjens R; Prévost M; Rooman M
    Biopolymers; 2001 Sep; 59(3):145-59. PubMed ID: 11391564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus.
    Weininger U; Zeeb M; Neumann P; Löw C; Stubbs MT; Lipps G; Balbach J
    Biochemistry; 2009 Oct; 48(42):10030-7. PubMed ID: 19788170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
    Papaleo E; Olufsen M; De Gioia L; Brandsdal BO
    J Mol Graph Model; 2007 Jul; 26(1):93-103. PubMed ID: 17084098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease.
    Gruia AD; Fischer S; Smith JC
    Proteins; 2003 Feb; 50(3):507-15. PubMed ID: 12557192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic role of electrostatic interactions in the unfolding of hyperthermophilic and mesophilic rubredoxins.
    Cavagnero S; Debe DA; Zhou ZH; Adams MW; Chan SI
    Biochemistry; 1998 Mar; 37(10):3369-76. PubMed ID: 9521657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and further stabilization of designed ankyrin repeat proteins by combining molecular dynamics simulations and experiments.
    Interlandi G; Wetzel SK; Settanni G; Plückthun A; Caflisch A
    J Mol Biol; 2008 Jan; 375(3):837-54. PubMed ID: 18048057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of hydrophobic core on the thermal stability of proteins - molecular dynamics simulations on a single point mutant of Sso7d abstract.
    Priyakumar UD
    J Biomol Struct Dyn; 2012; 29(5):961-71. PubMed ID: 22292954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of salt on the urea-unfolded form of barstar probed by m value measurements.
    Pradeep L; Udgaonkar JB
    Biochemistry; 2004 Sep; 43(36):11393-402. PubMed ID: 15350126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The solution structure of the Sac7d/DNA complex: a small-angle X-ray scattering study.
    Krueger JK; McCrary BS; Wang AH; Shriver JW; Trewhella J; Edmondson SP
    Biochemistry; 1999 Aug; 38(32):10247-55. PubMed ID: 10441118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A stabilizing alpha/beta-hydrophobic core greatly contributes to hyperthermostability of archaeal [P62A]Ssh10b.
    Fang X; Cui Q; Tong Y; Feng Y; Shan L; Huang L; Wang J
    Biochemistry; 2008 Oct; 47(43):11212-21. PubMed ID: 18821773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation.
    Liu J; Yu H; Shen Z
    J Mol Graph Model; 2008 Nov; 27(4):529-35. PubMed ID: 18948044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.