These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9917600)

  • 21. Effect of acetabular component anteversion on dislocation mechanisms in total hip arthroplasty.
    Higa M; Tanino H; Abo M; Kakunai S; Banks SA
    J Biomech; 2011 Jun; 44(9):1810-3. PubMed ID: 21529811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of head diameter on passive and active dynamic hip dislocation.
    Bunn A; Colwell CW; D'Lima DD
    J Orthop Res; 2014 Nov; 32(11):1525-31. PubMed ID: 24961686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting cause of dislocation after total hip arthroplasty by patient-specific four-dimensional motion analysis.
    Miki H; Sugano N; Yonenobu K; Tsuda K; Hattori M; Suzuki N
    Clin Biomech (Bristol, Avon); 2013 Feb; 28(2):182-6. PubMed ID: 23219052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ceramic-on-ceramic THA associated with fewer dislocations and less muscle degeneration by preserving muscle progenitors.
    Hernigou P; Roussignol X; Delambre J; Poignard A; Flouzat-Lachaniette CH
    Clin Orthop Relat Res; 2015 Dec; 473(12):3762-9. PubMed ID: 26054482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dislocation of primary total hip arthroplasty and the risk of redislocation.
    Brennan SA; Khan F; Kiernan C; Queally JM; McQuillan J; Gormley IC; O'Byrne JM
    Hip Int; 2012; 22(5):500-4. PubMed ID: 23100149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of microseparation and third-body particles on dual-mobility crosslinked hip liner wear.
    Netter JD; Hermida JC; Chen PC; Nevelos JE; D'Lima DD
    J Arthroplasty; 2014 Sep; 29(9):1849-53. PubMed ID: 24891003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of total hip design on dislocation: a computer model and clinical analysis.
    Padgett DE; Lipman J; Robie B; Nestor BJ
    Clin Orthop Relat Res; 2006 Jun; 447():48-52. PubMed ID: 16741474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cadaver-Specific Models for Finite-Element Analysis of Iliopsoas Impingement in Dual-Mobility Hip Implants.
    Zumbrunn T; Patel R; Duffy MP; Rubash HE; Malchau H; Freiberg AA; Muratoglu OK; Varadarajan KM
    J Arthroplasty; 2018 Nov; 33(11):3574-3580. PubMed ID: 30029930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Impingement Free Motion in Total Hip Arthroplasty - How Can We Implement It?].
    Widmer KH
    Z Orthop Unfall; 2016 Aug; 154(4):392-7. PubMed ID: 27336842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios.
    D'Lima DD; Urquhart AG; Buehler KO; Walker RH; Colwell CW
    J Bone Joint Surg Am; 2000 Mar; 82(3):315-21. PubMed ID: 10724224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissociation and Intrapelvic Entrapment of a Dual-mobility Polyethylene Component.
    Fehring KA; Berry DJ
    Clin Orthop Relat Res; 2016 Apr; 474(4):1072-6. PubMed ID: 26088765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual mobility cups provide biomechanical advantages in situations at risk for dislocation: a finite element analysis.
    Terrier A; Latypova A; Guillemin M; Parvex V; Guyen O
    Int Orthop; 2017 Mar; 41(3):551-556. PubMed ID: 28070611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing the risk of dislocation after total hip arthroplasty: the effect of orientation of the acetabular component.
    Biedermann R; Tonin A; Krismer M; Rachbauer F; Eibl G; Stöckl B
    J Bone Joint Surg Br; 2005 Jun; 87(6):762-9. PubMed ID: 15911655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using nonlinear finite element models to analyse stress distribution during subluxation and torque required for dislocation of newly developed total hip structure after prosthetic impingement.
    Chi WM; Lin CC; Ho YJ; Lin HC; Chen JH
    Med Biol Eng Comput; 2018 Jan; 56(1):37-47. PubMed ID: 28667590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Current Knowledge on Spinopelvic Mobility.
    Lum ZC; Coury JG; Cohen JL; Dorr LD
    J Arthroplasty; 2018 Jan; 33(1):291-296. PubMed ID: 28939031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relation between vertical orientation and stability of acetabular component in the dysplastic hip simulated by nonlinear three-dimensional finite element method.
    Oki H; Ando M; Omori H; Okumura Y; Negoro K; Uchida K; Baba H
    Artif Organs; 2004 Nov; 28(11):1050-4. PubMed ID: 15504121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Limited range of motion of hip resurfacing arthroplasty due to unfavorable ratio of prosthetic head size and femoral neck diameter.
    Kluess D; Zietz C; Lindner T; Mittelmeier W; Schmitz KP; Bader R
    Acta Orthop; 2008 Dec; 79(6):748-54. PubMed ID: 19085490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Range of Movement for Impingement and Dislocation Avoidance in Total Hip Replacement Predicted by Finite Element Model.
    Ezquerra L; Quilez MP; Pérez MÁ; Albareda J; Seral B
    J Med Biol Eng; 2017; 37(1):26-34. PubMed ID: 28286463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical biomechanics of wear in total hip arthroplasty.
    Callaghan JJ; Pedersen DR; Johnston RC; Brown TD
    Iowa Orthop J; 2003; 23():1-12. PubMed ID: 14575243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and Physical Validation of a Finite Element Model of Total Hip Dislocation.
    Scifert CF; Brown TD; Pedersen DR; Heiner AD; Callaghan JJ
    Comput Methods Biomech Biomed Engin; 1999; 2(2):139-147. PubMed ID: 11264823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.