These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9917820)

  • 1. Non-linear microscale alterations in membrane transport by electropermeabilization.
    Gowrishankar TR; Chen W; Lee RC
    Ann N Y Acad Sci; 1998 Sep; 858():205-16. PubMed ID: 9917820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of membrane sealing in transient electropermeabilization of skeletal muscle membranes.
    Gowrishankar TR; Pliquett U; Lee RC
    Ann N Y Acad Sci; 1999 Oct; 888():195-210. PubMed ID: 10842634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved double vaseline gap voltage clamp to study electroporated skeletal muscle fibers.
    Chen W; Lee RC
    Biophys J; 1994 Mar; 66(3 Pt 1):700-9. PubMed ID: 8011901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types.
    Ruff RL
    Acta Physiol Scand; 1996 Mar; 156(3):159-68. PubMed ID: 8729676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium channel regulation of skeletal muscle membrane excitability.
    Ruff RL
    Ann N Y Acad Sci; 1997 Dec; 835():64-76. PubMed ID: 9616762
    [No Abstract]   [Full Text] [Related]  

  • 6. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.
    Chen W; Lee RC
    Biophys J; 1994 Aug; 67(2):603-12. PubMed ID: 7948676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A surface potential change in the membranes of frog skeletal muscle is associated with excitation-contraction coupling.
    Jong DS; Stroffekova K; Heiny JA
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):787-808. PubMed ID: 9130173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field-induced functional reductions in the K+ channels mainly resulted from supramembrane potential-mediated electroconformational changes.
    Chen W; Han Y; Chen Y; Astumian D
    Biophys J; 1998 Jul; 75(1):196-206. PubMed ID: 9649379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological properties of zebrafish embryonic red and white muscle fibers during early development.
    Buss RR; Drapeau P
    J Neurophysiol; 2000 Sep; 84(3):1545-57. PubMed ID: 10980026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of temperature on slow and fast inactivation of rat skeletal muscle Na(+) channels.
    Ruff RL
    Am J Physiol; 1999 Nov; 277(5):C937-47. PubMed ID: 10564086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supra-physiological membrane potential induced conformational changes in K+ channel conducting system of skeletal muscle fibers.
    Chen W
    Bioelectrochemistry; 2004 Apr; 62(1):47-56. PubMed ID: 14990325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis.
    Valic B; Pavlin M; Miklavcic D
    Bioelectrochemistry; 2004 Jun; 63(1-2):311-5. PubMed ID: 15110294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells.
    O'Neill RJ; Tung L
    Biophys J; 1991 May; 59(5):1028-39. PubMed ID: 1907865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium signaling in isolated skeletal muscle fibers investigated under "Silicone Voltage-Clamp" conditions.
    Collet C; Pouvreau S; Csernoch L; Allard B; Jacquemond V
    Cell Biochem Biophys; 2004; 40(2):225-36. PubMed ID: 15054224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential.
    Hibino M; Itoh H; Kinosita K
    Biophys J; 1993 Jun; 64(6):1789-800. PubMed ID: 8369408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological analysis of voltage-dependent potassium currents in cultured skeletal myocytes of the frog Rana temporaria.
    Lukyanenko V; Katina IE; Nasledov GA; Terentyev DA
    Gen Physiol Biophys; 1995 Dec; 14(6):525-34. PubMed ID: 8773494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of C1- transport in skeletal muscle of Rana temporaria with the arginine-binding reagent phenylglyoxal.
    Skydsgaard JM
    J Physiol; 1998 Jul; 510 ( Pt 2)(Pt 2):591-604. PubMed ID: 9706006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation.
    Sharma V; Stebe K; Murphy JC; Tung L
    Biophys J; 1996 Dec; 71(6):3229-41. PubMed ID: 8968593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramembrane potential-induced electroconformational changes in sodium channel proteins: a potential mechanism involved in electric injury.
    Chen W; Zhongsheng Z; Lee RC
    Burns; 2006 Feb; 32(1):52-9. PubMed ID: 16384650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.