These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 991826)
1. Androgen receptor dependent and independent activities of testosterone on hepatic microsomal drug metabolism. Brown TR; Greene FE; Bardin CW Endocrinology; 1976 Nov; 99(5):1353-62. PubMed ID: 991826 [TBL] [Abstract][Full Text] [Related]
2. Role of neonatal androgen in the development of hepatic microsomal drug-metabolizing enzymes. Chung LW; Raymond G; Fox S J Pharmacol Exp Ther; 1975 May; 193(2):621-30. PubMed ID: 1142108 [TBL] [Abstract][Full Text] [Related]
3. Sex- and strain-dependent hepatic microsomal ethylmorphine N-demethylation in mice: the roles of type I binding and NADPH-cytochrome P-450 reductase. van den Berg AP; Noordhoek J; Savenije-Chapel EM; Koopman-Kool E Chem Biol Interact; 1977 Nov; 19(2):185-95. PubMed ID: 589699 [TBL] [Abstract][Full Text] [Related]
4. Effect of flutamide on hepatic cytosolic methyltrienolone (R1881) binding kinetics and testosterone responsive hepatic drug and steroid metabolism in the adult male rat. Sunahara GI; Pak RC; Bellward GD Biochem Pharmacol; 1987 Nov; 36(21):3571-7. PubMed ID: 3499905 [TBL] [Abstract][Full Text] [Related]
5. The additive effects of progestins on testosterone-stimulated hepatic ethylmorphine metabolism and cytochrome P-450 content. Brown TR; Greene FE; Bardin CW Steroids; 1977 Dec; 30(6):805-14. PubMed ID: 611643 [No Abstract] [Full Text] [Related]
6. Effects of endogenous sex hormones on mouse liver ethylmorphine N-demethylase. Brown TR; Greene FE Arch Int Pharmacodyn Ther; 1980 Nov; 248(1):13-25. PubMed ID: 7212871 [TBL] [Abstract][Full Text] [Related]
7. Effect of the Tfm locus on the hepatic ethylmorphine N-demethylase system in mice. Brown TR; Greene FE; Bullock LP; Bardin CW Endocrinology; 1978 Oct; 103(4):1374-82. PubMed ID: 744150 [No Abstract] [Full Text] [Related]
8. Sex-specific action of antiandrogens on androgen induced changes in hepatic microsomal 3 beta-hydroxysteroid dehydrogenase and 5 alpha-reductase activity in the rat. Lax ER; Schriefers H Acta Endocrinol (Copenh); 1981 Oct; 98(2):261-6. PubMed ID: 6457494 [TBL] [Abstract][Full Text] [Related]
9. Estrogen, not testosterone, creates male predominance of a P4501-related cytochrome in adult guinea pig adrenals. Black VH Endocrinology; 1994 Jul; 135(1):299-306. PubMed ID: 8013364 [TBL] [Abstract][Full Text] [Related]
10. Effect of a nonsteroidal antiandrogen, flutamide, on androgen receptor dynamics and ornithine decarboxylase gene expression in mouse kidney. Kontula KK; Seppänen PJ; van Duyne P; Bardin CW; Jänne OA Endocrinology; 1985 Jan; 116(1):226-33. PubMed ID: 3964747 [TBL] [Abstract][Full Text] [Related]
11. Depression of the hepatic cytochrome P-450 mono-oxygenase system by administered tilorone (2,7-bis(2-(diethylamino)ethoxy)fluoren-9-one dihydrochloride). Renton KW; Mannering GJ Drug Metab Dispos; 1976; 4(3):223-31. PubMed ID: 6226 [TBL] [Abstract][Full Text] [Related]
12. Mouse liver N-demethylase activity. Sex differences and androgen responsiveness. Brown TR; Bardin CW; Greene FE Pharmacology; 1978; 16(3):159-69. PubMed ID: 628676 [No Abstract] [Full Text] [Related]
13. Androgen-dependent renal microsomal cytochrome P-450 responsible for N-hydroxylation and mutagenic activation of 3-methoxy-4-aminoazobenzene in the BALB/c mouse. Degawa M; Miura S; Hashimoto Y Cancer Res; 1990 May; 50(9):2729-33. PubMed ID: 2328499 [TBL] [Abstract][Full Text] [Related]
14. Antiandrogenic effects of oestradiol on enzyme activities of hepatic steroid metabolism. Lax ER; Baumann P; Schriefers H Exp Clin Endocrinol; 1983 Aug; 82(2):145-52. PubMed ID: 6578932 [TBL] [Abstract][Full Text] [Related]
15. Imprinting of hepatic microsomal cytochrome P-450 enzyme activities and cytochrome P-450IIC11 by peripubertal administration of testosterone in female rats. Cadario BJ; Bellward GD; Bandiera S; Chang TK; Ko WW; Lemieux E; Pak RC Mol Pharmacol; 1992 May; 41(5):981-8. PubMed ID: 1588929 [TBL] [Abstract][Full Text] [Related]
16. Androgens regulate brain aromatase activity in adult male rats through a receptor mechanism. Roselli CE; Resko JA Endocrinology; 1984 Jun; 114(6):2183-9. PubMed ID: 6723579 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of neonatal androgen-induced imprinting of rat hepatic microsomal monooxygenases. Chung LW Biochem Pharmacol; 1977 Nov; 26(21):1979-84. PubMed ID: 921811 [No Abstract] [Full Text] [Related]
18. Ascorbic acid potentiates the substrate-specific inhibition of mixed-function oxidation and the stimulation of NADPH oxidation caused by paraquat. Montgomery MR; Shamblin PB J Toxicol Environ Health; 1984; 13(1):69-81. PubMed ID: 6716512 [TBL] [Abstract][Full Text] [Related]
19. Influence of dietary thiamin on phenobarbital induction of rat hepatic enzymes responsible for metabolizing drugs and carcinogens. Wade AE; Evans JS; Holmes D; Baker MT Drug Nutr Interact; 1983; 2(2):117-30. PubMed ID: 6432511 [TBL] [Abstract][Full Text] [Related]
20. Neonatal programming of ethylmorphine demethylase and corticosteroid 5 alpha-reductase by testosterone, dihydrotestosterone, and estradiol. Effects of an anti-estrogen, an anti-androgen, and an inhibitor of estrogen synthetase. Reyes EF; Virgo BB Drug Metab Dispos; 1988; 16(1):93-7. PubMed ID: 2894962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]