BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 9918724)

  • 1. Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 A resolution.
    Song H; Parsons MR; Rowsell S; Leonard G; Phillips SE
    J Mol Biol; 1999 Jan; 285(3):1245-56. PubMed ID: 9918724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution crystal structure of bovine mitochondrial EF-Tu in complex with GDP.
    Andersen GR; Thirup S; Spremulli LL; Nyborg J
    J Mol Biol; 2000 Mar; 297(2):421-36. PubMed ID: 10715211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 A resolution.
    Kawashima T; Berthet-Colominas C; Wulff M; Cusack S; Leberman R
    Nature; 1996 Feb; 379(6565):511-8. PubMed ID: 8596629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of potential structures for the G-domain of chloroplast EF-Tu using comparative molecular modeling.
    Lapadat MA; Deerfield DW; Pedersen LG; Spremulli LL
    Proteins; 1990; 8(3):237-50. PubMed ID: 2281086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and importance of the dimerization domain in elongation factor Ts from Thermus thermophilus.
    Jiang Y; Nock S; Nesper M; Sprinzl M; Sigler PB
    Biochemistry; 1996 Aug; 35(32):10269-78. PubMed ID: 8756682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving the structure of Escherichia coli elongation factor Tu using a twinned data set.
    Heffron SE; Moeller R; Jurnak F
    Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):433-8. PubMed ID: 16552145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helix unwinding in the effector region of elongation factor EF-Tu-GDP.
    Polekhina G; Thirup S; Kjeldgaard M; Nissen P; Lippmann C; Nyborg J
    Structure; 1996 Oct; 4(10):1141-51. PubMed ID: 8939739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of active elongation factor Tu reveals major domain rearrangements.
    Berchtold H; Reshetnikova L; Reiser CO; Schirmer NK; Sprinzl M; Hilgenfeld R
    Nature; 1993 Sep; 365(6442):126-32. PubMed ID: 8371755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Functionally important sites in the elongation factor EF-Tu from Thermus aquaticus: analysis of fine structural changes upon binding of guanosine-3'-triphosphate and guanosine-3'-diphosphate].
    Brazhnikov EV; Chirgadze IuN
    Biofizika; 2001; 46(6):1027-37. PubMed ID: 11771276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands.
    Cetin R; Anborgh PH; Cool RH; Parmeggiani A
    Biochemistry; 1998 Jan; 37(2):486-95. PubMed ID: 9425069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular complementarity between tetracycline and the GTPase active site of elongation factor Tu.
    Heffron SE; Mui S; Aorora A; Abel K; Bergmann E; Jurnak F
    Acta Crystallogr D Biol Crystallogr; 2006 Nov; 62(Pt 11):1392-400. PubMed ID: 17057344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An alpha to beta conformational switch in EF-Tu.
    Abel K; Yoder MD; Hilgenfeld R; Jurnak F
    Structure; 1996 Oct; 4(10):1153-9. PubMed ID: 8939740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of the action of pulvomycin and GE2270 A on elongation factor Tu.
    Parmeggiani A; Krab IM; Okamura S; Nielsen RC; Nyborg J; Nissen P
    Biochemistry; 2006 Jun; 45(22):6846-57. PubMed ID: 16734421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible evolution of factors involved in protein biosynthesis.
    Nyborg J
    Acta Biochim Pol; 1998; 45(4):883-94. PubMed ID: 10397336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation.
    Kjeldgaard M; Nissen P; Thirup S; Nyborg J
    Structure; 1993 Sep; 1(1):35-50. PubMed ID: 8069622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of p21 ras proteins.
    Shih TY; Hattori S; Clanton DJ; Ulsh LS; Chen ZQ; Lautenberger JA; Papas TS
    Gene Amplif Anal; 1986; 4():53-72. PubMed ID: 3333361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of Sulfolobus solfataricus elongation factor 1alpha in complex with magnesium and GDP.
    Vitagliano L; Ruggiero A; Masullo M; Cantiello P; Arcari P; Zagari A
    Biochemistry; 2004 Jun; 43(21):6630-6. PubMed ID: 15157096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.