These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9918838)

  • 1. How do skinned skeletal muscle fibers relax?
    Hoskins BK; Lipscomb S; Mulligan IP; Ashley CC
    Biochem Biophys Res Commun; 1999 Jan; 254(2):330-3. PubMed ID: 9918838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of phosphate on the relaxation of frog skeletal muscle.
    Mulligan IP; Palmer RE; Lipscomb S; Hoskins B; Ashley CC
    Pflugers Arch; 1999 Feb; 437(3):393-9. PubMed ID: 9914395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of relaxation rate in skinned frog skeletal muscle fibers.
    Wahr PA; Johnson JD; Rall JA
    Am J Physiol; 1998 Jun; 274(6):C1608-15. PubMed ID: 9611126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of MgADP in force maintenance by dephosphorylated cross-bridges in smooth muscle: a flash photolysis study.
    Khromov A; Somlyo AV; Trentham DR; Zimmermann B; Somlyo AP
    Biophys J; 1995 Dec; 69(6):2611-22. PubMed ID: 8599668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH, phosphate, and ADP on relaxation of myocardium after photolysis of diazo 2.
    Simnett SJ; Johns EC; Lipscomb S; Mulligan IP; Ashley CC
    Am J Physiol; 1998 Sep; 275(3):H951-60. PubMed ID: 9724300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of myosin regulatory light chain eliminates force-dependent changes in relaxation rates in skeletal muscle.
    Patel JR; Diffee GM; Huang XP; Moss RL
    Biophys J; 1998 Jan; 74(1):360-8. PubMed ID: 9449336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation kinetics following sudden Ca(2+) reduction in single myofibrils from skeletal muscle.
    Tesi C; Piroddi N; Colomo F; Poggesi C
    Biophys J; 2002 Oct; 83(4):2142-51. PubMed ID: 12324431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium transients and the effect of a photolytically released calcium chelator during electrically induced contractions in rabbit rectococcygeus smooth muscle.
    Arner A; Malmqvist U; Rigler R
    Biophys J; 1998 Oct; 75(4):1895-903. PubMed ID: 9746530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of relaxation rate in rabbit skinned skeletal muscle fibres.
    Luo Y; Davis JP; Smillie LB; Rall JA
    J Physiol; 2002 Dec; 545(3):887-901. PubMed ID: 12482894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A diazo-2 study of relaxation mechanisms in frog and barnacle muscle fibres: effects of pH, MgADP, and inorganic phosphate.
    Lipscomb S; Palmer RE; Li Q; Allhouse LD; Miller T; Potter JD; Ashley CC
    Pflugers Arch; 1999 Jan; 437(2):204-12. PubMed ID: 9929560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of calcium and crossbridges in modulation of rates of force development and relaxation in skinned muscle fibers.
    Rall JA; Wahr PA
    Adv Exp Med Biol; 1998; 453():219-27; discussion 227-8. PubMed ID: 9889832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of EMD 57033, a novel cardiotonic agent, on the relaxation of skinned cardiac and skeletal muscle produced by photolysis of diazo-2, a caged calcium chelator.
    Simnett SJ; Lipscomb S; Ashley CC; Mulligan IP
    Pflugers Arch; 1993 Oct; 425(1-2):175-7. PubMed ID: 8272375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres.
    Dantzig JA; Hibberd MG; Trentham DR; Goldman YE
    J Physiol; 1991 Jan; 432():639-80. PubMed ID: 1886072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle relaxation with diazo-2: the effect of altered pH.
    Palmer RE; Simnett SJ; Mulligan IP; Ashley CC
    Biochem Biophys Res Commun; 1991 Dec; 181(3):1337-42. PubMed ID: 1764084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin MgADP Release Rate Decreases as Sarcomere Length Increases in Skinned Rat Soleus Muscle Fibers.
    Fenwick AJ; Leighton SR; Tanner BCW
    Biophys J; 2016 Nov; 111(9):2011-2023. PubMed ID: 27806282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes.
    Stehle R; Krüger M; Pfitzer G
    Biophys J; 2002 Oct; 83(4):2152-61. PubMed ID: 12324432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myofibrillar determinants of rate of relaxation in skinned skeletal muscle fibers.
    Luo Y; Davis JP; Tikunova SB; Smillie LB; Rall JA
    Adv Exp Med Biol; 2003; 538():573-81; discussion 581-2. PubMed ID: 15098700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin filament cooperativity as a major determinant of shortening velocity in skeletal muscle fibers.
    Iwamoto H
    Biophys J; 1998 Mar; 74(3):1452-64. PubMed ID: 9512041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does cross-bridge activation determine the time course of myofibrillar relaxation?
    Stehle R; Krüger M; Pfitzer G
    Adv Exp Med Biol; 2003; 538():469-79; discussion 479. PubMed ID: 15098692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.