These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 9919658)

  • 81. Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae.
    Eleutherio EC; Araujo PS; Panek AD
    Biochim Biophys Acta; 1993 Mar; 1156(3):263-6. PubMed ID: 8461315
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The temperature dependence of maltose transport in ale and lager strains of brewer's yeast.
    Vidgren V; Multanen JP; Ruohonen L; Londesborough J
    FEMS Yeast Res; 2010 Jun; 10(4):402-11. PubMed ID: 20402791
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Intracellular localization of an active green fluorescent protein-tagged Pho84 phosphate permease in Saccharomyces cerevisiae.
    Petersson J; Pattison J; Kruckeberg AL; Berden JA; Persson BL
    FEBS Lett; 1999 Nov; 462(1-2):37-42. PubMed ID: 10580087
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae.
    Stambuk BU; De Araujo PS; Panek AD; Serrano R
    Eur J Biochem; 1996 May; 237(3):876-81. PubMed ID: 8647137
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effect of the petite mutation on maltose and alpha-methylgucoside fermentation inSaccharomyces cerevisiae.
    Khan NA; Greener A
    Mol Gen Genet; 1977 Jan; 150(1):107-8. PubMed ID: 319340
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Apparent half-lives of sugar transport proteins in Saccharomyces cerevisiae.
    Alonso A; Kotyk A
    Folia Microbiol (Praha); 1978; 23(2):118-25. PubMed ID: 348586
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The absorption of protons with alpha-methyl glucoside and alpha-thioethyl glucoside by the yeast N.C.Y.C. 240. Evidence against the phosphorylation hypothesis.
    Brocklehurst R; Gardner D; Eddy AA
    Biochem J; 1977 Mar; 162(3):591-9. PubMed ID: 326255
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Photoaffinity labelling of the purine-cytosine permease of Saccharomyces cerevisiae.
    Chirio MC; Brèthes D; Napias C; Grandier-Vazeille X; Rakotomanana F; Chevallier J
    Eur J Biochem; 1990 Nov; 194(1):293-9. PubMed ID: 2253621
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Proton-solute coupling mechanism of the maltose transporter from Saccharomyces cerevisiae.
    Henderson R; Poolman B
    Sci Rep; 2017 Oct; 7(1):14375. PubMed ID: 29084970
    [TBL] [Abstract][Full Text] [Related]  

  • 90. In vivo and in vitro studies of the purine-cytosine permease of Saccharomyces cerevisiae. Functional analysis of a mutant with an altered apparent transport constant of uptake.
    Brèthes D; Chirio MC; Napias C; Chevallier MR; Lavie JL; Chevallier J
    Eur J Biochem; 1992 Mar; 204(2):699-704. PubMed ID: 1541283
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter.
    Stolz J; Sauer N
    J Biol Chem; 1999 Jun; 274(26):18747-52. PubMed ID: 10373490
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 participate in the process of catabolite inactivation of maltose permease.
    Mayordomo I; Regelmann J; Horak J; Sanz P
    FEBS Lett; 2003 Jun; 544(1-3):160-4. PubMed ID: 12782308
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Contrasting Strategies for Sucrose Utilization in a Floral Yeast Clade.
    Gonçalves C; Marques M; Gonçalves P
    mSphere; 2022 Apr; 7(2):e0003522. PubMed ID: 35354279
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Plant sucrose-H+ symporters mediate the transport of vitamin H.
    Ludwig A; Stolz J; Sauer N
    Plant J; 2000 Nov; 24(4):503-9. PubMed ID: 11115131
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts.
    Panek AC; Vânia JJ; Paschoalin MF; Panek D
    Biochimie; 1990 Jan; 72(1):77-9. PubMed ID: 2160289
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters.
    Goffrini P; Ferrero I; Donnini C
    J Bacteriol; 2002 Jan; 184(2):427-32. PubMed ID: 11751819
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae.
    Ziman M; Chuang JS; Tsung M; Hamamoto S; Schekman R
    Mol Biol Cell; 1998 Jun; 9(6):1565-76. PubMed ID: 9614194
    [TBL] [Abstract][Full Text] [Related]  

  • 98. YIpDCE1 - an integrating plasmid for dual constitutive expression in yeast.
    Stearman R; Dancis A; Klausner RD
    Gene; 1998 Jun; 212(2):197-202. PubMed ID: 9611262
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation.
    Yoon SH; Mukerjea R; Robyt JF
    Carbohydr Res; 2003 May; 338(10):1127-32. PubMed ID: 12706980
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Kar-mediated plasmid transfer between yeast strains: alternative to traditional transformation methods.
    Georgieva B; Rothstein R
    Methods Enzymol; 2002; 350():278-89. PubMed ID: 12073318
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.