BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 9920381)

  • 1. D-arabinose dehydrogenase and its gene from Saccharomyces cerevisiae.
    Kim ST; Huh WK; Lee BH; Kang SO
    Biochim Biophys Acta; 1998 Dec; 1429(1):29-39. PubMed ID: 9920381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-xylose metabolism in Hypocrea jecorina: loss of the xylitol dehydrogenase step can be partially compensated for by lad1-encoded L-arabinitol-4-dehydrogenase.
    Seiboth B; Hartl L; Pail M; Kubicek CP
    Eukaryot Cell; 2003 Oct; 2(5):867-75. PubMed ID: 14555469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in
    Jia Y; Burbidge CA; Sweetman C; Schutz E; Soole K; Jenkins C; Hancock RD; Bruning JB; Ford CM
    J Biol Chem; 2019 Nov; 294(44):15932-15946. PubMed ID: 31488549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isozyme multiplicity with anomalous dimer patterns in a class III alcohol dehydrogenase. Effects on the activity and quaternary structure of residue exchanges at "nonfunctional" sites in a native protein.
    Danielsson O; Shafqat J; Estonius M; el-Ahmad M; Jörnvall H
    Biochemistry; 1996 Nov; 35(46):14561-8. PubMed ID: 8931553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yiaE gene, located at 80.1 minutes on the Escherichia coli chromosome, encodes a 2-ketoaldonate reductase.
    Yum DY; Lee BY; Hahm DH; Pan JG
    J Bacteriol; 1998 Nov; 180(22):5984-8. PubMed ID: 9811658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a novel medium-chain ribitol dehydrogenase from a lichen-associated bacterium Sphingomonas sp.
    Tran KN; Pham N; Jang SH; Lee C
    PLoS One; 2020; 15(7):e0235718. PubMed ID: 32639976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insight into substrate differentiation of the sugar-metabolizing enzyme galactitol dehydrogenase from Rhodobacter sphaeroides D.
    Carius Y; Christian H; Faust A; Zander U; Klink BU; Kornberger P; Kohring GW; Giffhorn F; Scheidig AJ
    J Biol Chem; 2010 Jun; 285(26):20006-14. PubMed ID: 20410293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress on the characterization of aldonolactone oxidoreductases.
    Aboobucker SI; Lorence A
    Plant Physiol Biochem; 2016 Jan; 98():171-85. PubMed ID: 26696130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxysteroid 17-β dehydrogenase 14 (HSD17B14) is an L-fucose dehydrogenase, the initial enzyme of the L-fucose degradation pathway.
    Witecka A; Kazak V; Kwiatkowski S; Kiersztan A; Jagielski AK; Kozminski W; Augustyniak R; Drozak J
    J Biol Chem; 2024 Jun; ():107501. PubMed ID: 38944119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron withdrawing group-dependent substrate inhibition of an α-ketoamide reductase from Saccharomyces cerevisiae.
    Akbary Z; Yu H; Lorenzo I; Paez K; Lee ND; DeBeVoise K; Moses J; Sanders N; Connors N; Cassano A
    Biochem Biophys Res Commun; 2023 Oct; 676():97-102. PubMed ID: 37499370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing 3,4-dihydroxyphenylpyruvic acid to d-3,4-dihydroxyphenyllactic acid via a coenzyme nonspecific d-lactate dehydrogenase from Lactobacillus reuteri.
    Wang YH; Bai YJ; Fan TP; Zheng XH; Cai YJ
    J Appl Microbiol; 2018 Aug; ():. PubMed ID: 30129993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional analysis of hyper-thermostable ancestral L-amino acid oxidase that can convert Trp derivatives to D-forms by chemoenzymatic reaction.
    Kawamura Y; Ishida C; Miyata R; Miyata A; Hayashi S; Fujinami D; Ito S; Nakano S
    Commun Chem; 2023 Sep; 6(1):200. PubMed ID: 37737277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a synthetic metabolic pathway for biosynthesis of 2,4-dihydroxybutyric acid from ethylene glycol.
    Frazão CJR; Wagner N; Rabe K; Walther T
    Nat Commun; 2023 Apr; 14(1):1931. PubMed ID: 37024485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the Aldo-Keto Reductase Responsible for d-Galacturonic Acid Conversion to l-Galactonate in
    Rippert D; Linguardo F; Perpelea A; Klein M; Nevoigt E
    J Fungi (Basel); 2021 Oct; 7(11):. PubMed ID: 34829203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Cell Factories for Green Production of Vitamins.
    Wang Y; Liu L; Jin Z; Zhang D
    Front Bioeng Biotechnol; 2021; 9():661562. PubMed ID: 34222212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-Step Biosynthesis of Vitamin C in
    Zhou M; Bi Y; Ding M; Yuan Y
    Front Microbiol; 2021; 12():643472. PubMed ID: 33717042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Nonphosphorylative Metabolism as an Alternative for Utilization of Lignocellulosic Biomass.
    McClintock MK; Wang J; Zhang K
    Front Microbiol; 2017; 8():2310. PubMed ID: 29218038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.
    Kuivanen J; Penttilä M; Richard P
    Microb Cell Fact; 2015 Jan; 14():2. PubMed ID: 25566698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition.
    Hu XQ; Guo PC; Ma JD; Li WF
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Nov; 69(Pt 11):1190-5. PubMed ID: 24192347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis.
    Rosa JC; Colombo LT; Alvim MC; Avonce N; Van Dijck P; Passos FM
    Microb Cell Fact; 2013 Jun; 12():59. PubMed ID: 23799937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.