BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9920883)

  • 1. Dependence of peroxisomal beta-oxidation on cytosolic sources of NADPH.
    Minard KI; McAlister-Henn L
    J Biol Chem; 1999 Feb; 274(6):3402-6. PubMed ID: 9920883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.
    van Roermund CW; Hettema EH; Kal AJ; van den Berg M; Tabak HF; Wanders RJ
    EMBO J; 1998 Feb; 17(3):677-87. PubMed ID: 9450993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant function of cytosolic sources of NADPH in yeast.
    Minard KI; McAlister-Henn L
    Free Radic Biol Med; 2001 Sep; 31(6):832-43. PubMed ID: 11557322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sources of NADPH in yeast vary with carbon source.
    Minard KI; McAlister-Henn L
    J Biol Chem; 2005 Dec; 280(48):39890-6. PubMed ID: 16179340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae.
    Minard KI; Jennings GT; Loftus TM; Xuan D; McAlister-Henn L
    J Biol Chem; 1998 Nov; 273(47):31486-93. PubMed ID: 9813062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IDP3 encodes a peroxisomal NADP-dependent isocitrate dehydrogenase required for the beta-oxidation of unsaturated fatty acids.
    Henke B; Girzalsky W; Berteaux-Lecellier V; Erdmann R
    J Biol Chem; 1998 Feb; 273(6):3702-11. PubMed ID: 9452501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxisomal localization and function of NADP+ -specific isocitrate dehydrogenases in yeast.
    Lu Q; McAlister-Henn L
    Arch Biochem Biophys; 2010 Jan; 493(2):125-34. PubMed ID: 19854152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases.
    Contreras-Shannon V; Lin AP; McCammon MT; McAlister-Henn L
    J Biol Chem; 2005 Feb; 280(6):4469-75. PubMed ID: 15574419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in disulfide bond content of proteins in a yeast strain lacking major sources of NADPH.
    Minard KI; Carroll CA; Weintraub ST; Mc-Alister-Henn L
    Free Radic Biol Med; 2007 Jan; 42(1):106-17. PubMed ID: 17157197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of compartmental localization on the function of yeast NADP+-specific isocitrate dehydrogenases.
    Contreras-Shannon V; McAlister-Henn L
    Arch Biochem Biophys; 2004 Mar; 423(2):235-46. PubMed ID: 15001388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effect of NAD kinase homologues on the beta-oxidation of unsaturated fatty acids with the double bond at an even position in Saccharomyces cerevisiae].
    Shi F; Li YF
    Sheng Wu Gong Cheng Xue Bao; 2006 Jul; 22(4):667-71. PubMed ID: 16894907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity.
    Grabowska D; Chelstowska A
    J Biol Chem; 2003 Apr; 278(16):13984-8. PubMed ID: 12584194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation, characterization, and disruption of the yeast gene encoding cytosolic NADP-specific isocitrate dehydrogenase.
    Loftus TM; Hall LV; Anderson SL; McAlister-Henn L
    Biochemistry; 1994 Aug; 33(32):9661-7. PubMed ID: 8068643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual compartmental localization and function of mammalian NADP+-specific isocitrate dehydrogenase in yeast.
    Lu Q; Minard KI; McAlister-Henn L
    Arch Biochem Biophys; 2008 Apr; 472(1):17-25. PubMed ID: 18275837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae.
    Partow S; Hyland PB; Mahadevan R
    Metab Eng; 2017 Sep; 43(Pt A):64-70. PubMed ID: 28803913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and gene disruption analysis of the isocitrate dehydrogenase family in yeast.
    Zhao WN; McAlister-Henn L
    Biochemistry; 1996 Jun; 35(24):7873-8. PubMed ID: 8672488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of ZWF1 and POS5 improves carotenoid biosynthesis in recombinant Saccharomyces cerevisiae.
    Zhao X; Shi F; Zhan W
    Lett Appl Microbiol; 2015 Oct; 61(4):354-60. PubMed ID: 26179622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations of peroxisomal function in ischemia-reperfusion injury of rat kidney.
    Gulati S; Ainol L; Orak J; Singh AK; Singh I
    Biochim Biophys Acta; 1993 Oct; 1182(3):291-8. PubMed ID: 8399363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A yeast strain defective in oleic acid utilization has a mutation in the RML2 gene.
    Trotter PJ; Hagerman RA; Voelker DR
    Biochim Biophys Acta; 1999 May; 1438(2):223-38. PubMed ID: 10320805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.