These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 992096)

  • 61. Additional purine compounds in the venom of the tiger snake (Notechis scutatus).
    DOERY HM
    Nature; 1957 Oct; 180(4590):799-800. PubMed ID: 13483527
    [No Abstract]   [Full Text] [Related]  

  • 62. The interaction of Crotalus atrox phospholipase A2 with calcium ion and 1-anilinonaphthalene-8-sulfonate.
    Purdon AD; Tinker DO; Spero L
    Can J Biochem; 1977 Mar; 55(3):205-14. PubMed ID: 18264
    [No Abstract]   [Full Text] [Related]  

  • 63. Ultrastructural changes in skeletal muscle caused by a phospholipase A2 fraction isolated from the venom of a sea snake, Enhydrina schistosa.
    Geh SL; Toh HT
    Toxicon; 1978; 16(6):633-43. PubMed ID: 725958
    [No Abstract]   [Full Text] [Related]  

  • 64. Comparison of venom constituents from four tiger snake (Notechis) subspecies.
    John TR; Kaiser II
    Toxicon; 1990; 28(9):1117-22. PubMed ID: 2260110
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cross-Neutralisation of In Vitro Neurotoxicity of Asian and Australian Snake Neurotoxins and Venoms by Different Antivenoms.
    Silva A; Hodgson WC; Isbister GK
    Toxins (Basel); 2016 Oct; 8(10):. PubMed ID: 27763543
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Coagulant effects of black snake (Pseudechis spp.) venoms and in vitro efficacy of commercial antivenom.
    Lane J; O'Leary MA; Isbister GK
    Toxicon; 2011 Sep; 58(3):239-46. PubMed ID: 21723878
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: efficacy of two commercially available antivenoms.
    Chetty N; Du A; Hodgson WC; Winkel K; Fry BG
    Toxicon; 2004 Aug; 44(2):193-200. PubMed ID: 15246769
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development of simple standard assay procedures for the characterization of snake venom.
    Theakston RD; Reid HA
    Bull World Health Organ; 1983; 61(6):949-56. PubMed ID: 6609011
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Studies on snake venom phospholipase A: isolation, characterization and partial amino acid sequence.
    Samejima Y; Iwanaga S; Suzuki T; Kawauchi S
    Jpn J Med Sci Biol; 1971 Feb; 24(1):31-4. PubMed ID: 5314269
    [No Abstract]   [Full Text] [Related]  

  • 70. Search for relationships among the hemolytic, phospholipolytic, and neurotoxic activities of snake venoms.
    Jeng TW; Hendon RA; Fraenkel-Conrat H
    Proc Natl Acad Sci U S A; 1978 Feb; 75(2):600-4. PubMed ID: 273221
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical modification of Lys-6 in phospholipase A2 from Naja melanoleuca snake venom.
    van Eijk JH; Verheij HM; de Haas GH
    Eur J Biochem; 1983 Apr; 132(1):177-82. PubMed ID: 6404627
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pharmacological study of phospholipase A from Vipera ammodytes venom.
    Sket D; Gubensek F
    Toxicon; 1976 Aug; 14(5):393-6. PubMed ID: 982478
    [No Abstract]   [Full Text] [Related]  

  • 73. A lethal myotoxin isolated from the venom of the Australian king brown snake (Pseudechis australis).
    Leonardi TM; Howden ME; Spence I
    Toxicon; 1979; 17(6):549-55. PubMed ID: 524383
    [No Abstract]   [Full Text] [Related]  

  • 74. Variation in venom proteins from isolated populations of tiger snakes (Notechis ater niger, N. scutatus) in South Australia.
    Williams V; White J; Schwaner TD; Sparrow A
    Toxicon; 1988; 26(11):1067-75. PubMed ID: 3245051
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Notechis scutatus venom increases the yield of proliferating muscle cells from biopsies of normal and dystrophic canine muscle--a possible source for myoblast transfer studies.
    Dux L; Cooper BJ; Sewry CA; Dubowitz V
    Neuromuscul Disord; 1993 Jan; 3(1):23-9. PubMed ID: 8329886
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Temperature stability of phospholipase A activity. II. Variations in optimum temperature of phospholipases A2 from various snake venoms.
    Nair BC; Nair C; Elliott WB
    Toxicon; 1976; 14(1):43-7. PubMed ID: 1258067
    [No Abstract]   [Full Text] [Related]  

  • 77. Structure-function relationships of phospholipases. I: Prediction of presynaptic neurotoxicity.
    Kini RM; Iwanaga S
    Toxicon; 1986; 24(6):527-41. PubMed ID: 3750341
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of crystals of two venom phospholipases A2.
    Pasek M; Keith C; Feldman D; Sigler PB
    J Mol Biol; 1975 Sep; 97(3):395-7. PubMed ID: 1181469
    [No Abstract]   [Full Text] [Related]  

  • 79. Actions of snake venom toxins on neuronal nicotinic receptors and other neuronal receptors.
    Chiappinelli VA
    Pharmacol Ther; 1985; 31(1-2):1-32. PubMed ID: 3031701
    [No Abstract]   [Full Text] [Related]  

  • 80. Central neurotoxicity of apamin, crotamin, phospholipase A and alpha-amanitin.
    Habermann E; Cheng-Raude D
    Toxicon; 1975 Dec; 13(6):465-73. PubMed ID: 1220090
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.