These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9921583)

  • 1. Human growth hormone transgene expression increases the biomechanical structural properties of mouse vertebrae.
    Steinke B; Patwardhan AG; Havey RM; King D
    Spine (Phila Pa 1976); 1999 Jan; 24(1):1-4. PubMed ID: 9921583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of growth hormone transgene expression on vertebrae in a mouse model of osteogenesis imperfecta.
    King D; Chase J; Havey RM; Voronov L; Sartori M; McEwen HA; Beamer WG; Patwardhan AG
    Spine (Phila Pa 1976); 2005 Jul; 30(13):1491-5. PubMed ID: 15990661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rat osteoporotic spine model for the evaluation of bioresorbable bone cements.
    Wang ML; Massie J; Perry A; Garfin SR; Kim CW
    Spine J; 2007; 7(4):466-74. PubMed ID: 17630145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gender specific LRP5 influences on trabecular bone structure and strength.
    Dubrow SA; Hruby PM; Akhter MP
    J Musculoskelet Neuronal Interact; 2007; 7(2):166-73. PubMed ID: 17627087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth hormone injections improve bone quality in a mouse model of osteogenesis imperfecta.
    King D; Jarjoura D; McEwen HA; Askew MJ
    J Bone Miner Res; 2005 Jun; 20(6):987-93. PubMed ID: 15883639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic axial compression of the mouse tail segment induces MRI bone marrow edema changes that correlate with increased marrow vasculature and cellularity.
    Papuga MO; Proulx ST; Kwok E; You Z; Rubery PT; Dougherty PE; Hilton MJ; Awad HA; Schwarz EM
    J Orthop Res; 2010 Sep; 28(9):1220-8. PubMed ID: 20187115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic over-expression of plasminogen activator inhibitor-1 results in age-dependent and gender-specific increases in bone strength and mineralization.
    Nordstrom SM; Carleton SM; Carson WL; Eren M; Phillips CL; Vaughan DE
    Bone; 2007 Dec; 41(6):995-1004. PubMed ID: 17888748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype.
    Webster D; Wasserman E; Ehrbar M; Weber F; Bab I; Müller R
    Biomech Model Mechanobiol; 2010 Dec; 9(6):737-47. PubMed ID: 20352279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in the mechanical properties and composition of skin in human growth hormone transgenic mice.
    Serrat MA; Vinyard CJ; King D
    Connect Tissue Res; 2007; 48(1):19-26. PubMed ID: 17364663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical investigation of vertebroplasty in osteoporotic compression fractures and in prophylactic vertebral reinforcement.
    Furtado N; Oakland RJ; Wilcox RK; Hall RM
    Spine (Phila Pa 1976); 2007 Aug; 32(17):E480-7. PubMed ID: 17762281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythroid-specific expression of human growth hormone affects bone morphology in transgenic mice.
    Saban J; Schneider GB; Bolt D; King D
    Bone; 1996 Jan; 18(1):47-52. PubMed ID: 8717536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of treatment with parathyroid hormone 1-84 on quantity and biomechanical properties of thoracic vertebral trabecular bone in ovariectomized rhesus monkeys.
    Fox J; Newman MK; Turner CH; Guldberg RE; Varela A; Smith SY
    Calcif Tissue Int; 2008 Mar; 82(3):212-20. PubMed ID: 18297227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of trabecular bone to the stiffness and strength of rat lumbar vertebrae.
    Barak MM; Weiner S; Shahar R
    Spine (Phila Pa 1976); 2010 Oct; 35(22):E1153-9. PubMed ID: 20881656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level.
    Hou Y; Luo Z
    Spine (Phila Pa 1976); 2009 May; 34(12):E427-33. PubMed ID: 19454994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging.
    Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW
    Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc.
    Elliott DM; Sarver JJ
    Spine (Phila Pa 1976); 2004 Apr; 29(7):713-22. PubMed ID: 15087791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment.
    Lambers FM; Kuhn G; Weigt C; Koch KM; Schulte FA; Müller R
    J Biomech; 2015 Apr; 48(6):1179-87. PubMed ID: 25543278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-computed tomography evaluation of trabecular bone structure on loaded mice tail vertebrae.
    Issever AS; Walsh A; Lu Y; Burghardt A; Lotz JC; Majumdar S
    Spine (Phila Pa 1976); 2003 Jan; 28(2):123-8. PubMed ID: 12544927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and mechanical properties of caudal vertebrae in the SAMP6 mouse model of senile osteoporosis.
    Silva MJ; Brodt MD; Uthgenannt BA
    Bone; 2004 Aug; 35(2):425-31. PubMed ID: 15268893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.