BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 9922167)

  • 1. Evaluation of the role of His447 in the reaction catalyzed by cholesterol oxidase.
    Kass IJ; Sampson NS
    Biochemistry; 1998 Dec; 37(51):17990-8000. PubMed ID: 9922167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a catalytically inactive cholesterol oxidase mutant: investigation of the interplay between active site-residues glutamate 361 and histidine 447.
    Yin Y; Liu P; Anderson RG; Sampson NS
    Arch Biochem Biophys; 2002 Jun; 402(2):235-42. PubMed ID: 12051668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The presence of a hydrogen bond between asparagine 485 and the pi system of FAD modulates the redox potential in the reaction catalyzed by cholesterol oxidase.
    Yin Y; Sampson NS; Vrielink A; Lario PI
    Biochemistry; 2001 Nov; 40(46):13779-87. PubMed ID: 11705367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants.
    Yue QK; Kass IJ; Sampson NS; Vrielink A
    Biochemistry; 1999 Apr; 38(14):4277-86. PubMed ID: 10194345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of GLU361 position in the reaction catalyzed by cholesterol oxidase.
    Kass IJ; Sampson NS
    Bioorg Med Chem Lett; 1998 Oct; 8(19):2663-8. PubMed ID: 9873599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase.
    Lyubimov AY; Chen L; Sampson NS; Vrielink A
    Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1222-31. PubMed ID: 19923719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the role of an omega loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity.
    Sampson NS; Kass IJ; Ghoshroy KB
    Biochemistry; 1998 Apr; 37(16):5770-8. PubMed ID: 9548964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational insights for the hydride transfer and distinctive roles of key residues in cholesterol oxidase.
    Yu LJ; Golden E; Chen N; Zhao Y; Vrielink A; Karton A
    Sci Rep; 2017 Dec; 7(1):17265. PubMed ID: 29222497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of the two reactions, oxidation and isomerization, catalyzed by Streptomyces cholesterol oxidase.
    Yamashita M; Toyama M; Ono H; Fujii I; Hirayama N; Murooka Y
    Protein Eng; 1998 Nov; 11(11):1075-81. PubMed ID: 9876929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutagenic studies on histidine 98 of methylglyoxal synthase: effects on mechanism and conformational change.
    Marks GT; Susler M; Harrison DH
    Biochemistry; 2004 Apr; 43(13):3802-13. PubMed ID: 15049687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase.
    Lim L; Molla G; Guinn N; Ghisla S; Pollegioni L; Vrielink A
    Biochem J; 2006 Nov; 400(1):13-22. PubMed ID: 16856877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of membrane disruption in the reaction catalyzed by cholesterol oxidase.
    Ghoshroy KB; Zhu W; Sampson NS
    Biochemistry; 1997 May; 36(20):6133-40. PubMed ID: 9166784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme.
    Bohren KM; Grimshaw CE; Lai CJ; Harrison DH; Ringe D; Petsko GA; Gabbay KH
    Biochemistry; 1994 Mar; 33(8):2021-32. PubMed ID: 8117659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The binding and release of oxygen and hydrogen peroxide are directed by a hydrophobic tunnel in cholesterol oxidase.
    Chen L; Lyubimov AY; Brammer L; Vrielink A; Sampson NS
    Biochemistry; 2008 May; 47(19):5368-77. PubMed ID: 18410129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase.
    Drohat AC; Jagadeesh J; Ferguson E; Stivers JT
    Biochemistry; 1999 Sep; 38(37):11866-75. PubMed ID: 10508389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase.
    LeBrun LA; Park DH; Ramaswamy S; Plapp BV
    Biochemistry; 2004 Mar; 43(11):3014-26. PubMed ID: 15023053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissection of a flavoenzyme active site: the reaction catalyzed by cholesterol oxidase.
    Sampson NS
    Antioxid Redox Signal; 2001 Oct; 3(5):839-46. PubMed ID: 11761331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol oxidase: biotechnological applications.
    Pollegioni L; Piubelli L; Molla G
    FEBS J; 2009 Dec; 276(23):6857-70. PubMed ID: 19843167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.