These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 9922168)

  • 1. Pressure-denatured state of Escherichia coli ribonuclease HI as monitored by Fourier transform infrared and NMR spectroscopy.
    Yamasaki K; Taniguchi Y; Takeda N; Nakano K; Yamasaki T; Kanaya S; Oobatake M
    Biochemistry; 1998 Dec; 37(51):18001-9. PubMed ID: 9922168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure- and thermally-induced reversible changes in the secondary structure of ribonuclease A studied by FT-IR spectroscopy.
    Takeda N; Kato M; Taniguchi Y
    Biochemistry; 1995 May; 34(17):5980-7. PubMed ID: 7727454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding pathway of Escherichia coli ribonuclease HI: a circular dichroism, fluorescence, and NMR study.
    Yamasaki K; Ogasahara K; Yutani K; Oobatake M; Kanaya S
    Biochemistry; 1995 Dec; 34(51):16552-62. PubMed ID: 8527428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-induced denaturation of Escherichia coli ribonuclease HI analyzed by CD and NMR spectroscopies.
    Yamasaki K; Yamasaki T; Kanaya S; Oobatake M
    Biopolymers; 2003 Jun; 69(2):176-88. PubMed ID: 12767121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-induced unfolding/refolding of ribonuclease A: static and kinetic Fourier transform infrared spectroscopy study.
    Panick G; Winter R
    Biochemistry; 2000 Feb; 39(7):1862-9. PubMed ID: 10677237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the acid state of Escherichia coli ribonuclease HI.
    Dabora JM; Pelton JG; Marqusee S
    Biochemistry; 1996 Sep; 35(37):11951-8. PubMed ID: 8810899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molten globule unfolding monitored by hydrogen exchange in urea.
    Chamberlain AK; Marqusee S
    Biochemistry; 1998 Feb; 37(7):1736-42. PubMed ID: 9492739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-exchange kinetics in the cold denatured state of ribonuclease A.
    Nash D; Lee BS; Jonas J
    Biochim Biophys Acta; 1996 Sep; 1297(1):40-8. PubMed ID: 8841379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange.
    Houry WA; Scheraga HA
    Biochemistry; 1996 Sep; 35(36):11734-46. PubMed ID: 8794754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molten globule structure of equine beta-lactoglobulin probed by hydrogen exchange.
    Kobayashi T; Ikeguchi M; Sugai S
    J Mol Biol; 2000 Jun; 299(3):757-70. PubMed ID: 10835282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR study of the cold, heat, and pressure unfolding of ribonuclease A.
    Zhang J; Peng X; Jonas A; Jonas J
    Biochemistry; 1995 Jul; 34(27):8631-41. PubMed ID: 7612603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally denatured ribonuclease A retains secondary structure as shown by FTIR.
    Seshadri S; Oberg KA; Fink AL
    Biochemistry; 1994 Feb; 33(6):1351-5. PubMed ID: 8312253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Destabilizing mutations alter the hydrogen exchange mechanism in ribonuclease A.
    Bruix M; Ribó M; Benito A; Laurents DV; Rico M; Vilanova M
    Biophys J; 2008 Mar; 94(6):2297-305. PubMed ID: 18192347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen exchange in a large 29 kD protein and characterization of molten globule aggregation by NMR.
    Kjellsson A; Sethson I; Jonsson BH
    Biochemistry; 2003 Jan; 42(2):363-74. PubMed ID: 12525163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural stability and internal motions of Escherichia coli ribonuclease HI: 15N relaxation and hydrogen-deuterium exchange analyses.
    Yamasaki K; Akasako-Furukawa A; Kanaya S
    J Mol Biol; 1998 Apr; 277(3):707-22. PubMed ID: 9533889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in conformational dynamics of ribonucleases A and S as observed by infrared spectroscopy and hydrogen-deuterium exchange.
    Dong A; Hyslop RM; Pringle DL
    Arch Biochem Biophys; 1996 Sep; 333(1):275-81. PubMed ID: 8806781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of alpha-helices in a molten globule state of cytochrome c by hydrogen-deuterium exchange and two-dimensional NMR spectroscopy.
    Kuroda Y; Endo S; Nagayama K; Wada A
    J Mol Biol; 1995 Apr; 247(4):682-8. PubMed ID: 7723023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.