BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9922169)

  • 1. Monitoring the sizes of denatured ensembles of staphylococcal nuclease proteins: implications regarding m values, intermediates, and thermodynamics.
    Baskakov IV; Bolen DW
    Biochemistry; 1998 Dec; 37(51):18010-7. PubMed ID: 9922169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.
    Ionescu RM; Eftink MR
    Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment.
    Eftink MR; Ionescu R; Ramsay GD; Wong CY; Wu JQ; Maki AH
    Biochemistry; 1996 Jun; 35(24):8084-94. PubMed ID: 8672513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of tryptophan analogues into staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment: spectroscopic studies.
    Wong CY; Eftink MR
    Biochemistry; 1998 Jun; 37(25):8938-46. PubMed ID: 9636035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of tryptophan analogues into staphylococcal nuclease: stability toward thermal and guanidine-HCl induced unfolding.
    Wong CY; Eftink MR
    Biochemistry; 1998 Jun; 37(25):8947-53. PubMed ID: 9636036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorescence and optically detected magnetic resonance characterization of the environments of tryptophan analogues in staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment.
    Ozarowski A; Wu JQ; Davis SK; Wong CY; Eftink MR; Maki AH
    Biochemistry; 1998 Jun; 37(25):8954-64. PubMed ID: 9636037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-state thermodynamic analysis of the denaturation of staphylococcal nuclease mutants.
    Carra JH; Anderson EA; Privalov PL
    Biochemistry; 1994 Sep; 33(35):10842-50. PubMed ID: 8075087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics study of the stability of staphylococcal nuclease mutants: component analysis of the free energy difference of denaturation.
    Yamaotsu N; Moriguchi I; Kollman PA; Hirono S
    Biochim Biophys Acta; 1993 Apr; 1163(1):81-8. PubMed ID: 8476933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH dependence of stability of staphylococcal nuclease: evidence of substantial electrostatic interactions in the denatured state.
    Whitten ST; García-Moreno E B
    Biochemistry; 2000 Nov; 39(46):14292-304. PubMed ID: 11087378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorometric study of the acid-induced denaturation of Staphylococcal nuclease and its mutant forms.
    Tanaka A
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1293-8. PubMed ID: 15215594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence energy transfer indicates similar transient and equilibrium intermediates in staphylococcal nuclease folding.
    Nishimura C; Riley R; Eastman P; Fink AL
    J Mol Biol; 2000 Jun; 299(4):1133-46. PubMed ID: 10843864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of denaturation and m values of staphylococcal nuclease mutants.
    Carra JH; Privalov PL
    Biochemistry; 1995 Feb; 34(6):2034-41. PubMed ID: 7849061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phase transition between a compact denatured state and a random coil state in staphylococcal nuclease is first-order.
    Gittis AG; Stites WE; Lattman EE
    J Mol Biol; 1993 Aug; 232(3):718-24. PubMed ID: 8355268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of staphylococcal nuclease denaturation. I. The acid-denatured state.
    Carra JH; Anderson EA; Privalov PL
    Protein Sci; 1994 Jun; 3(6):944-51. PubMed ID: 8069223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Cooperative collapse" of the denatured state revealed through Clausius-Clapeyron analysis of protein denaturation phase diagrams.
    Tischer A; Machha VR; Rösgen J; Auton M
    Biopolymers; 2018 Aug; 109(8):e23106. PubMed ID: 29457634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact thermally-denatured state of a staphylococcal nuclease mutant from resonance energy transfer measurements.
    Wu PG; James E; Brand L
    Biophys Chem; 1993 Dec; 48(2):123-33. PubMed ID: 8298051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of side chain packing in staphylococcal nuclease assessed by exchange of valines, isoleucines, and leucines.
    Holder JB; Bennett AF; Chen J; Spencer DS; Byrne MP; Stites WE
    Biochemistry; 2001 Nov; 40(46):13998-4003. PubMed ID: 11705391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact denatured state of a staphylococcal nuclease mutant by guanidinium as determined by resonance energy transfer.
    James E; Wu PG; Stites W; Brand L
    Biochemistry; 1992 Oct; 31(42):10217-25. PubMed ID: 1420143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of the changes in denatured state structure underlying m value effects in staphylococcal nuclease.
    Wrabl J; Shortle D
    Nat Struct Biol; 1999 Sep; 6(9):876-83. PubMed ID: 10467101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.