These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9922177)

  • 1. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure.
    Cost GJ; Boeke JD
    Biochemistry; 1998 Dec; 37(51):18081-93. PubMed ID: 9922177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition.
    Feng Q; Moran JV; Kazazian HH; Boeke JD
    Cell; 1996 Nov; 87(5):905-16. PubMed ID: 8945517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural dissection of sequence recognition and catalytic mechanism of human LINE-1 endonuclease.
    Miller I; Totrov M; Korotchkina L; Kazyulkin DN; Gudkov AV; Korolev S
    Nucleic Acids Res; 2021 Nov; 49(19):11350-11366. PubMed ID: 34554261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease.
    Repanas K; Zingler N; Layer LE; Schumann GG; Perrakis A; Weichenrieder O
    Nucleic Acids Res; 2007; 35(14):4914-26. PubMed ID: 17626046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon.
    Weichenrieder O; Repanas K; Perrakis A
    Structure; 2004 Jun; 12(6):975-86. PubMed ID: 15274918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical association of pyrimidine dimer DNA glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA.
    Nakabeppu Y; Sekiguchi M
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2742-6. PubMed ID: 6265906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases.
    Erzberger JP; Barsky D; Schärer OD; Colvin ME; Wilson DM
    Nucleic Acids Res; 1998 Jun; 26(11):2771-8. PubMed ID: 9592167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target DNA chromatinization modulates nicking by L1 endonuclease.
    Cost GJ; Golding A; Schlissel MS; Boeke JD
    Nucleic Acids Res; 2001 Jan; 29(2):573-7. PubMed ID: 11139628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micrococcus luteus endonucleases for apurinic/apyrimidinic sites in deoxyribonucleic acid. 2. Further studies on the substrate specificity and mechanism of action.
    Pierre J; Laval J
    Biochemistry; 1980 Oct; 19(22):5024-9. PubMed ID: 6257274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition by harmane of the apurinic apyrimidinic endonuclease activity of phage T4-induced UV endonuclease.
    Warner HR; Persson ML; Bensen RJ; Mosbaugh DW; Linn S
    Nucleic Acids Res; 1981 Nov; 9(22):6083-92. PubMed ID: 6273822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the protein-DNA interface and the metal-binding site of the major human apurinic/apyrimidinic endonuclease.
    Nguyen LH; Barsky D; Erzberger JP; Wilson DM
    J Mol Biol; 2000 May; 298(3):447-59. PubMed ID: 10772862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The recognition of DNA containing an AP site by E.coli endonuclease VI (exonuclease III).
    Shida T; Noda M; Sekiguchi J
    Nucleic Acids Symp Ser; 1995; (34):87-8. PubMed ID: 8841565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apurinic/apyrimidinic endonucleases in repair of pyrimidine dimers and other lesions in DNA.
    Warner HR; Demple BF; Deutsch WA; Kane CM; Linn S
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4602-6. PubMed ID: 6254032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural dynamics of wild type and mutated forms of human L1 endonuclease and insights into its sequence specific nucleic acid binding mechanism: A molecular dynamics study.
    Rajagopalan M; Balasubramanian S; Ramaswamy A
    J Mol Graph Model; 2017 Sep; 76():43-55. PubMed ID: 28704776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)(n) by endonuclease of non-long terminal repeat retrotransposon TRAS1.
    Anzai T; Takahashi H; Fujiwara H
    Mol Cell Biol; 2001 Jan; 21(1):100-8. PubMed ID: 11113185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons.
    Jurka J
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1872-7. PubMed ID: 9050872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of endonuclease specificity during evolution of L1 retrotransposon.
    Ichiyanagi K; Nishihara H; Duvernell DD; Okada N
    Mol Biol Evol; 2007 Sep; 24(9):2009-15. PubMed ID: 17602167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication.
    Flasch DA; Macia Á; Sánchez L; Ljungman M; Heras SR; García-Pérez JL; Wilson TE; Moran JV
    Cell; 2019 May; 177(4):837-851.e28. PubMed ID: 30955886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon, Tx1L.
    Christensen S; Pont-Kingdon G; Carroll D
    Mol Cell Biol; 2000 Feb; 20(4):1219-26. PubMed ID: 10648607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.
    Kanno S; Iwai S; Takao M; Yasui A
    Nucleic Acids Res; 1999 Aug; 27(15):3096-103. PubMed ID: 10454605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.