BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 9922238)

  • 21. The ptsH, ptsI, and crr genes of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: a complex operon with several modes of transcription.
    De Reuse H; Danchin A
    J Bacteriol; 1988 Sep; 170(9):3827-37. PubMed ID: 2457575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes.
    Herro R; Poncet S; Cossart P; Buchrieser C; Gouin E; Glaser P; Deutscher J
    J Mol Microbiol Biotechnol; 2005; 9(3-4):224-34. PubMed ID: 16415595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unique monocistronic operon (ptsH) in Mycoplasma capricolum encoding the phosphocarrier protein, HPr, of the phosphoenolpyruvate:sugar phosphotransferase system. Cloning, sequencing, and characterization of ptsH.
    Zhu PP; Reizer J; Reizer A; Peterkofsky A
    J Biol Chem; 1993 Dec; 268(35):26531-40. PubMed ID: 8253782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr.
    Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J
    J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular characterization of HPr and related enzymes, and regulation of HPr phosphorylation in the ruminal bacterium Streptococcus bovis.
    Asanuma N; Hino T
    Arch Microbiol; 2003 Mar; 179(3):205-13. PubMed ID: 12610726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Isolation and genetic study of Erwinia mutants devoid of common components of the phosphoenolpyruvate-dependent phosphotransferase system].
    Datsenko KA; Evtushenkov AN; Bol'shakova TN
    Genetika; 2002 May; 38(5):622-8. PubMed ID: 12068545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Lactobacillus casei ptsHI47T mutation causes overexpression of a LevR-regulated but RpoN-independent operon encoding a mannose class phosphotransferase system.
    Mazé A; Boël G; Poncet S; Mijakovic I; Le Breton Y; Benachour A; Monedero V; Deutscher J; Hartke A
    J Bacteriol; 2004 Jul; 186(14):4543-55. PubMed ID: 15231787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic and biochemical characterization of the phosphoenolpyruvate:glucose/mannose phosphotransferase system of Streptococcus thermophilus.
    Cochu A; Vadeboncoeur C; Moineau S; Frenette M
    Appl Environ Microbiol; 2003 Sep; 69(9):5423-32. PubMed ID: 12957931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Properties of mutants of bacteria belonging to the genus Erwinia devoid of common components of the phosphoenolpyruvate-dependent phosphotransferase system].
    Datsenko KA; Evtushenko AN; Sergeev KV; Dobrynina OIu; Bol'shakova TN
    Genetika; 2002 Jul; 38(7):904-10. PubMed ID: 12174582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis.
    Djordjevic GM; Tchieu JH; Saier MH
    J Bacteriol; 2001 May; 183(10):3224-36. PubMed ID: 11325952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system.
    Macfadyen LP; Dorocicz IR; Reizer J; Saier MH; Redfield RJ
    Mol Microbiol; 1996 Sep; 21(5):941-52. PubMed ID: 8885265
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity of Streptococcus salivarius ptsH mutants that can be isolated in the presence of 2-deoxyglucose and galactose and characterization of two mutants synthesizing reduced levels of HPr, a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase system.
    Thomas S; Brochu D; Vadeboncoeur C
    J Bacteriol; 2001 Sep; 183(17):5145-54. PubMed ID: 11489868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular cloning and analysis of the ptsHI operon in Lactobacillus sake.
    Stentz R; Lauret R; Ehrlich SD; Morel-Deville F; Zagorec M
    Appl Environ Microbiol; 1997 Jun; 63(6):2111-6. PubMed ID: 9172326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of catabolite repression function of HPr, the phosphocarrier protein of the bacterial phosphotransferase system, affects expression of the cry4A toxin gene in Bacillus thuringiensis subsp. israelensis.
    Khan SR; Banerjee-Bhatnagar N
    J Bacteriol; 2002 Oct; 184(19):5410-7. PubMed ID: 12218029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius.
    Plamondon P; Brochu D; Thomas S; Fradette J; Gauthier L; Vaillancourt K; Buckley N; Frenette M; Vadeboncoeur C
    J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function?
    Deutscher J; Kessler U; Alpert CA; Hengstenberg W
    Biochemistry; 1984 Sep; 23(19):4455-60. PubMed ID: 21370586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.