These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
591 related articles for article (PubMed ID: 9922375)
1. Structure and function of the CFTR chloride channel. Sheppard DN; Welsh MJ Physiol Rev; 1999 Jan; 79(1 Suppl):S23-45. PubMed ID: 9922375 [TBL] [Abstract][Full Text] [Related]
2. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
3. Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation. Hwang TC; Sheppard DN J Physiol; 2009 May; 587(Pt 10):2151-61. PubMed ID: 19332488 [TBL] [Abstract][Full Text] [Related]
4. The gating of the CFTR channel. Moran O Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113 [TBL] [Abstract][Full Text] [Related]
5. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
6. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Csanády L; Vergani P; Gadsby DC Physiol Rev; 2019 Jan; 99(1):707-738. PubMed ID: 30516439 [TBL] [Abstract][Full Text] [Related]
7. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
8. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Vergani P; Lockless SW; Nairn AC; Gadsby DC Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345 [TBL] [Abstract][Full Text] [Related]
9. Conformational Changes of CFTR upon Phosphorylation and ATP Binding. Zhang Z; Liu F; Chen J Cell; 2017 Jul; 170(3):483-491.e8. PubMed ID: 28735752 [TBL] [Abstract][Full Text] [Related]
10. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl Chen JH; Xu W; Sheppard DN J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763 [TBL] [Abstract][Full Text] [Related]
11. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Gadsby DC; Nairn AC Physiol Rev; 1999 Jan; 79(1 Suppl):S77-S107. PubMed ID: 9922377 [TBL] [Abstract][Full Text] [Related]
12. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates. Sugita M; Yue Y; Foskett JK EMBO J; 1998 Feb; 17(4):898-908. PubMed ID: 9463368 [TBL] [Abstract][Full Text] [Related]
13. Exploiting species differences to understand the CFTR Cl- channel. Bose SJ; Scott-Ward TS; Cai Z; Sheppard DN Biochem Soc Trans; 2015 Oct; 43(5):975-82. PubMed ID: 26517912 [TBL] [Abstract][Full Text] [Related]
14. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop. Ehrhardt A; Chung WJ; Pyle LC; Wang W; Nowotarski K; Mulvihill CM; Ramjeesingh M; Hong J; Velu SE; Lewis HA; Atwell S; Aller S; Bear CE; Lukacs GL; Kirk KL; Sorscher EJ J Biol Chem; 2016 Jan; 291(4):1854-1865. PubMed ID: 26627831 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters. Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075 [TBL] [Abstract][Full Text] [Related]
16. Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator. Muallem D; Vergani P Philos Trans R Soc Lond B Biol Sci; 2009 Jan; 364(1514):247-55. PubMed ID: 18957373 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. Csanády L; Nairn AC; Gadsby DC J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148 [TBL] [Abstract][Full Text] [Related]
18. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening. Wang W; Roessler BC; Kirk KL J Biol Chem; 2014 Oct; 289(44):30364-30378. PubMed ID: 25190805 [TBL] [Abstract][Full Text] [Related]
19. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
20. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating. Fu J; Ji HL; Naren AP; Kirk KL J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]