These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 9922375)

  • 21. CFTR is a conductance regulator as well as a chloride channel.
    Schwiebert EM; Benos DJ; Egan ME; Stutts MJ; Guggino WB
    Physiol Rev; 1999 Jan; 79(1 Suppl):S145-66. PubMed ID: 9922379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of the CFTR channel's gates.
    Vergani P; Basso C; Mense M; Nairn AC; Gadsby DC
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1003-7. PubMed ID: 16246032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor.
    Broadbent SD; Ramjeesingh M; Bear CE; Argent BE; Linsdell P; Gray MA
    Pflugers Arch; 2015 Aug; 467(8):1783-94. PubMed ID: 25277268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cystic fibrosis transmembrane conductance regulator Cl⁻ channel: a versatile engine for transepithelial ion transport.
    Li H; Cai Z; Chen JH; Ju M; Xu Z; Sheppard DN
    Sheng Li Xue Bao; 2007 Aug; 59(4):416-30. PubMed ID: 17700962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ABC protein turned chloride channel whose failure causes cystic fibrosis.
    Gadsby DC; Vergani P; Csanády L
    Nature; 2006 Mar; 440(7083):477-83. PubMed ID: 16554808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.
    Bompadre SG; Hwang TC
    Sheng Li Xue Bao; 2007 Aug; 59(4):431-42. PubMed ID: 17700963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional similarities between the nucleotide-binding domains of CFTR and GTP-binding proteins.
    Carson MR; Welsh MJ
    Biophys J; 1995 Dec; 69(6):2443-8. PubMed ID: 8599650
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure.
    Linsdell P
    Channels (Austin); 2018; 12(1):284-290. PubMed ID: 30152709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator.
    Ketchum CJ; Rajendrakumar GV; Maloney PC
    Biochemistry; 2004 Feb; 43(4):1045-53. PubMed ID: 14744150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator.
    Nagel G
    Biochim Biophys Acta; 1999 Dec; 1461(2):263-74. PubMed ID: 10581360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
    Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of deletion mutations on the function of CFTR chloride channels.
    Rich DP; Gregory RJ; Cheng SH; Smith AE; Welsh MJ
    Recept Channels; 1993; 1(3):221-32. PubMed ID: 7522901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revisiting cystic fibrosis transmembrane conductance regulator structure and function.
    Hanrahan JW; Wioland MA
    Proc Am Thorac Soc; 2004; 1(1):17-21. PubMed ID: 16113406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An intrinsic adenylate kinase activity regulates gating of the ABC transporter CFTR.
    Randak C; Welsh MJ
    Cell; 2003 Dec; 115(7):837-50. PubMed ID: 14697202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.
    Corradi V; Vergani P; Tieleman DP
    J Biol Chem; 2015 Sep; 290(38):22891-906. PubMed ID: 26229102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP hydrolysis cycles and the gating of CFTR Cl- channels.
    Gadsby DC; Dousmanis AG; Nairn AC
    Acta Physiol Scand Suppl; 1998 Aug; 643():247-56. PubMed ID: 9789567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A unified view of cystic fibrosis transmembrane conductance regulator (CFTR) gating: combining the allosterism of a ligand-gated channel with the enzymatic activity of an ATP-binding cassette (ABC) transporter.
    Kirk KL; Wang W
    J Biol Chem; 2011 Apr; 286(15):12813-9. PubMed ID: 21296873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.