These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 9922377)

  • 21. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator.
    Aleksandrov L; Mengos A; Chang X; Aleksandrov A; Riordan JR
    J Biol Chem; 2001 Apr; 276(16):12918-23. PubMed ID: 11279083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis.
    Ikuma M; Welsh MJ
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8675-80. PubMed ID: 10880569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening.
    Wang W; Roessler BC; Kirk KL
    J Biol Chem; 2014 Oct; 289(44):30364-30378. PubMed ID: 25190805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL.
    Csanády L; Vergani P; Gadsby DC
    Physiol Rev; 2019 Jan; 99(1):707-738. PubMed ID: 30516439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation.
    Hwang TC; Sheppard DN
    J Physiol; 2009 May; 587(Pt 10):2151-61. PubMed ID: 19332488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modulation of CFTR gating by permeant ions.
    Yeh HI; Yeh JT; Hwang TC
    J Gen Physiol; 2015 Jan; 145(1):47-60. PubMed ID: 25512598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the adenosinetriphosphatase and transport activities of purified cystic fibrosis transmembrane conductance regulator.
    Ketchum CJ; Rajendrakumar GV; Maloney PC
    Biochemistry; 2004 Feb; 43(4):1045-53. PubMed ID: 14744150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The gating of the CFTR channel.
    Moran O
    Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
    Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.
    Csanády L; Mihályi C; Szollosi A; Töröcsik B; Vergani P
    J Gen Physiol; 2013 Jul; 142(1):61-73. PubMed ID: 23752332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis.
    Hwang TC; Nagel G; Nairn AC; Gadsby DC
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4698-702. PubMed ID: 7515176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting cystic fibrosis transmembrane conductance regulator structure and function.
    Hanrahan JW; Wioland MA
    Proc Am Thorac Soc; 2004; 1(1):17-21. PubMed ID: 16113406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain.
    Berger AL; Ikuma M; Welsh MJ
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):455-60. PubMed ID: 15623556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis.
    El Hiani Y; Linsdell P
    Biochem Cell Biol; 2014 Dec; 92(6):481-8. PubMed ID: 25367045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational Changes of CFTR upon Phosphorylation and ATP Binding.
    Zhang Z; Liu F; Chen J
    Cell; 2017 Jul; 170(3):483-491.e8. PubMed ID: 28735752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of CFTR channel gating.
    Gadsby DC; Hwang TC; Baukrowitz T; Nagel G; Horie M; Nairn AC
    Jpn J Physiol; 1994; 44 Suppl 2():S183-92. PubMed ID: 7752525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Dynamics Flexible Fitting Simulations Identify New Models of the Closed State of the Cystic Fibrosis Transmembrane Conductance Regulator Protein.
    Simhaev L; McCarty NA; Ford RC; Senderowitz H
    J Chem Inf Model; 2017 Aug; 57(8):1932-1946. PubMed ID: 28657312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover.
    Aleksandrov L; Aleksandrov AA; Chang XB; Riordan JR
    J Biol Chem; 2002 May; 277(18):15419-25. PubMed ID: 11861646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.