These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9923077)

  • 1. Retention in reversed-phase chromatography: partition or adsorption?
    Vailaya A; Horváth C
    J Chromatogr A; 1998 Dec; 829(1-2):1-27. PubMed ID: 9923077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the organic modifier concentration on the retention in reversed-phase liquid chromatography I. General semi-thermodynamic treatment for adsorption and partition mechanisms.
    Nikitas P; Pappa-Louisi A; Agrafiotou P
    J Chromatogr A; 2002 Feb; 946(1-2):9-32. PubMed ID: 11873986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the enthalpy and entropy contributions of the stationary phase in reversed-phase liquid chromatography.
    Ranatunga RP; Carr PW
    Anal Chem; 2000 Nov; 72(22):5679-92. PubMed ID: 11101249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement and modelling of the intra-particle diffusion and b-term in reversed-phase liquid chromatography.
    Cabooter D; Song H; Makey D; Sadriaj D; Dittmann M; Stoll D; Desmet G
    J Chromatogr A; 2021 Jan; 1637():461852. PubMed ID: 33412290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein partition between the different phases comprising poly(ethylene glycol)-salt aqueous two-phase systems, hydrophobic interaction chromatography and precipitation: a generic description in terms of salting-out effects.
    Huddleston J; Abelaira JC; Wang R; Lyddiatt A
    J Chromatogr B Biomed Appl; 1996 May; 680(1-2):31-41. PubMed ID: 8798879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention in hydrophobic interaction chromatography and dissolution of nonpolar gases in water.
    Vailaya A; Horváth C
    Biophys Chem; 1996 Nov; 62(1-3):81-93. PubMed ID: 8962473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption/partition model of liquid chromatography for chemically bonded stationary phases of the aliphatic cyano, reversed-phase C8 and reversed-phase C18 types.
    Kaczmarski K; Prus W; Kowalska T
    J Chromatogr A; 2000 Feb; 869(1-2):57-64. PubMed ID: 10720225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited.
    Jandera P; Hájek T; Šromová Z
    J Chromatogr A; 2018 Mar; 1543():48-57. PubMed ID: 29486886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention process in reversed phase TLC systems with polar bonded stationary phases.
    Zapała W; Waksmundzka-Hajnos M
    J Sep Sci; 2005 Apr; 28(6):566-74. PubMed ID: 15881087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combination of partition, size exclusion, and hydrodynamic models in chromatography, and application to bonded phases on porous supports.
    Chester TL
    J Chromatogr A; 2020 Jun; 1620():461011. PubMed ID: 32284152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography.
    Poole CF
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Aug; 1092():207-219. PubMed ID: 29908470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic evaluation of activated charcoal as a poison antidote by high-performance liquid chromatography. I: Derivation and validation of an equation for Gibbs free energy of liquid-solid adsorption.
    Kleeman WP; Bailey LC
    J Pharm Sci; 1988 Jun; 77(6):500-5. PubMed ID: 3171929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of stationary phases in subcritical fluid chromatography by the solvation parameter model. I. Alkylsiloxane-bonded stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):181-90. PubMed ID: 16487535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailability estimation by reversed-phase liquid chromatography: high bonding density C-18 phases for modeling biopartitioning processes.
    Hsieh MM; Dorsey JG
    Anal Chem; 1995 Jan; 67(1):48-57. PubMed ID: 7864391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography.
    Tsui HW; Lin SZ; Hsu YC; Dai FJ
    J Chromatogr A; 2022 Jan; 1662():462736. PubMed ID: 34923304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of retention in reversed-phase liquid chromatography. 1. Stationary-phase considerations.
    Cole LA; Dorsey JG
    Anal Chem; 1992 Jul; 64(13):1317-23. PubMed ID: 1503212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the surface coverage of endcapped C18-silica on the excess adsorption isotherms of commonly used organic solvents from water in reversed phase liquid chromatography.
    Gritti F; Kazakevich YV; Guiochon G
    J Chromatogr A; 2007 Oct; 1169(1-2):111-24. PubMed ID: 17875311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention prediction of peptide diastereomers in reversed-phase liquid chromatography assisted by molecular dynamics simulation.
    Tsai CW; Chen WY; Ruaan RC
    Langmuir; 2012 Sep; 28(38):13601-8. PubMed ID: 22946847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention.
    Dinh NP; Jonsson T; Irgum K
    J Chromatogr A; 2013 Dec; 1320():33-47. PubMed ID: 24200388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.