These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9923602)

  • 1. Regulation of voltage-dependent K+ channels by methionine oxidation: effect of nitric oxide and vitamin C.
    Ciorba MA; Heinemann SH; Weissbach H; Brot N; Hoshi T
    FEBS Lett; 1999 Jan; 442(1):48-52. PubMed ID: 9923602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of P/C-type inactivation in voltage-gated K(+) channels by methionine oxidation.
    Chen J; Avdonin V; Ciorba MA; Heinemann SH; Hoshi T
    Biophys J; 2000 Jan; 78(1):174-87. PubMed ID: 10620284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of potassium channel function by methionine oxidation and reduction.
    Ciorba MA; Heinemann SH; Weissbach H; Brot N; Hoshi T
    Proc Natl Acad Sci U S A; 1997 Sep; 94(18):9932-7. PubMed ID: 9275229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of outer mouth mutations on hERG channel function: a comparison with similar mutations in the Shaker channel.
    Fan JS; Jiang M; Dun W; McDonald TV; Tseng GN
    Biophys J; 1999 Jun; 76(6):3128-40. PubMed ID: 10354437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation and pharmacological properties of sqKv1A homotetramers in Xenopus oocytes cannot account for behavior of the squid "delayed rectifier" K(+) conductance.
    Jerng HH; Gilly WF
    Biophys J; 2002 Jun; 82(6):3022-36. PubMed ID: 12023225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shaker and ether-à-go-go K+ channel subunits fail to coassemble in Xenopus oocytes.
    Tang CY; Schulteis CT; Jiménez RM; Papazian DM
    Biophys J; 1998 Sep; 75(3):1263-70. PubMed ID: 9726929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
    Gonzalez C; Morera FJ; Rosenmann E; Alvarez O; Latorre R
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5020-5. PubMed ID: 15774578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of charybdotoxin block of a voltage-gated K+ channel.
    Goldstein SA; Miller C
    Biophys J; 1993 Oct; 65(4):1613-9. PubMed ID: 7506068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated K+ channels.
    Avdonin V; Kasuya J; Ciorba MA; Kaplan B; Hoshi T; Iverson L
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11703-8. PubMed ID: 9751729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pore region of the Kv1.2alpha subunit is an important component of recombinant Kv1.2 channel oxygen sensitivity.
    Conforti L; Takimoto K; Petrovic M; Pongs O; Millhorn D
    Biochem Biophys Res Commun; 2003 Jun; 306(2):450-6. PubMed ID: 12804584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KCNA10: a novel ion channel functionally related to both voltage-gated potassium and CNG cation channels.
    Lang R; Lee G; Liu W; Tian S; Rafi H; Orias M; Segal AS; Desir GV
    Am J Physiol Renal Physiol; 2000 Jun; 278(6):F1013-21. PubMed ID: 10836990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors.
    Zhou M; Morais-Cabral JH; Mann S; MacKinnon R
    Nature; 2001 Jun; 411(6838):657-61. PubMed ID: 11395760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues in a jellyfish shaker-like channel involved in modulation by external potassium.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1740-7. PubMed ID: 10515963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions.
    Tabarean IV; Morris CE
    Biophys J; 2002 Jun; 82(6):2982-94. PubMed ID: 12023221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of level of expression of a jellyfish Shaker potassium channel: a positive potassium feedback mechanism.
    Grigoriev NG; Spafford JD; Spencer AN
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):25-33. PubMed ID: 10226146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. U-type inactivation of Kv3.1 and Shaker potassium channels.
    Klemic KG; Kirsch GE; Jones SW
    Biophys J; 2001 Aug; 81(2):814-26. PubMed ID: 11463627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation in ShakerB K+ channels: a test for the number of inactivating particles on each channel.
    Gomez-Lagunas F; Armstrong CM
    Biophys J; 1995 Jan; 68(1):89-95. PubMed ID: 7711272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K+ channels lacking the 'tetramerization' domain: implications for pore structure.
    Kobertz WR; Miller C
    Nat Struct Biol; 1999 Dec; 6(12):1122-5. PubMed ID: 10581553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-channel properties of IKs potassium channels.
    Yang Y; Sigworth FJ
    J Gen Physiol; 1998 Dec; 112(6):665-78. PubMed ID: 9834139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution of a hydrophobic residue alters the conformational stability of Shaker K+ channels during gating and assembly.
    McCormack K; Lin L; Sigworth FJ
    Biophys J; 1993 Oct; 65(4):1740-8. PubMed ID: 8274662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.