BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9923976)

  • 1. Potentiation of the 5-aminolevulinic acid-based photodynamic therapy with cyclophosphamide.
    Casas A; Fukuda H; Batlle AM
    Cancer Biochem Biophys; 1998 Jun; 16(1-2):183-96. PubMed ID: 9923976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy can be enhanced by the use of a low dose of photofrin in human tumor xenografts.
    Peng Q; Warloe T; Moan J; Godal A; Apricena F; Giercksky KE; Nesland JM
    Cancer Res; 2001 Aug; 61(15):5824-32. PubMed ID: 11479222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Aminolevulinic acid photodynamic therapy of transplantable colon adenocarcinoma in BALB/c mice.
    Ziółkowski P; Symonowicz K; Osiecka BJ; Rabczyński J
    Arch Immunol Ther Exp (Warsz); 1998; 46(5):301-4. PubMed ID: 9832069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms.
    Fukuda H; Paredes S; Batlle AM
    Drug Des Deliv; 1989 Dec; 5(2):133-9. PubMed ID: 2577983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic changes in the heme pathway driven by cyclophosphamide treatment in mice.
    Casas A; Fukuda H; Del C Batlle AM
    Cell Mol Biol (Noisy-le-grand); 1997 Feb; 43(1):95-101. PubMed ID: 9074794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of 5-aminolevulinic acid derivatives and induced porphyrin kinetics in mice tissues.
    Di Venosa G; Batlle A; Fukuda H; Macrobert A; Casas A
    Cancer Chemother Pharmacol; 2006 Oct; 58(4):478-86. PubMed ID: 16485117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo fluorescence kinetics and photodynamic therapy efficacy of delta-aminolevulinic acid-induced porphyrins in basal cell carcinomas and actinic keratoses; implications for optimization of photodynamic therapy.
    Stefanidou M; Tosca A; Themelis G; Vazgiouraki E; Balas C
    Eur J Dermatol; 2000; 10(5):351-6. PubMed ID: 10882942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin.
    Casas A; Fukuda H; Riley P; del C Batlle AM
    Cancer Lett; 1997 Dec; 121(1):105-13. PubMed ID: 9459181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of tumor necrosis by delta-aminolevulinic acid and 1,10-phenanthroline photodynamic therapy.
    Rebeiz N; Arkins S; Rebeiz CA; Simon J; Zachary JF; Kelley KW
    Cancer Res; 1996 Jan; 56(2):339-44. PubMed ID: 8542589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor vascular response to photodynamic therapy and the antivascular agent 5,6-dimethylxanthenone-4-acetic acid: implications for combination therapy.
    Seshadri M; Spernyak JA; Mazurchuk R; Camacho SH; Oseroff AR; Cheney RT; Bellnier DA
    Clin Cancer Res; 2005 Jun; 11(11):4241-50. PubMed ID: 15930363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic action of endogenously synthesized porphyrins from aminolevulinic acid, using a new model for assaying the effectiveness of tumoral cell killing.
    Fukuda H; Casas A; Chueke F; Paredes S; Batlle AM
    Int J Biochem; 1993 Oct; 25(10):1395-8. PubMed ID: 8224354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antitumor effect of postoperative treatment with genistein alone or combined with cyclophosphamide in mice bearing transplantable tumors.
    Wietrzyk J; Opolski A; Madej J; Radzikowski C
    Acta Pol Pharm; 2000 Nov; 57 Suppl():5-8. PubMed ID: 11293263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term regression of the murine mammary adenocarcinoma, LM3, by repeated photodynamic treatments using meso-tetra (4-N-methylpyridinium) porphine.
    Colombo LL; Vanzulli SI; Villanueva A; Cañete M; Juarranz A; Stockert JC
    Int J Oncol; 2005 Oct; 27(4):1053-9. PubMed ID: 16142323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmentation of antitumor effect of endogenously induced tumor necrosis factor by cyclophosphamide.
    Inagawa H; Ohshiro S; Nishizawa T; Goto S; Soma G; Mizuno D
    Anticancer Res; 1997; 17(1A):55-60. PubMed ID: 9066630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dose and schedule of immune stimulant on efficacy of combination Corynebacterium parvum-cyclophosphamide treatment for a murine mammary adenocarcinoma.
    Purnell DM; Bartlett GL; Kreider JW
    Cancer Res; 1979 Jan; 39(1):1-5. PubMed ID: 761179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of C3H/He mouse mammary tumor growth by combined treatment with cyclophosphamide and polyadenylic-polyuridylic acid.
    Youn JK; Lacour F; Hue G
    Cancer Res; 1982 Nov; 42(11):4706-11. PubMed ID: 7127305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a bystander role of neutrophils in the response to systemic 5-aminolevulinic acid-based photodynamic therapy.
    de Bruijn HS; Sluiter W; van der Ploeg-van den Heuvel A; Sterenborg HJ; Robinson DJ
    Photodermatol Photoimmunol Photomed; 2006 Oct; 22(5):238-46. PubMed ID: 16948825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative antitumor effects of Corynebacterium parvum, Bordetella pertussis, Bacillus Calmette-Guérin, and levamisole alone or in combination with cyclophosphamide in the CaD2 murine mammary adenocarcinoma system.
    Purnell DM; Bartlett GL; Kreider JW; Biro TG; Kontra J
    Cancer Res; 1979 Dec; 39(12):4838-42. PubMed ID: 498111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous porphyrins in murine skin and transplanted PAM-212 squamous cell carcinoma tissues after injection of delta-aminolevulinic acid.
    Xu S; Menon IA; Becker MA; Wiltshire JD; Haberman HF; Chen Z; Gaspari AA
    Chin Med J (Engl); 1995 Apr; 108(4):286-90. PubMed ID: 7789217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schedule-dependent interaction between Doxorubicin and mTHPC-mediated photodynamic therapy in murine hepatoma in vitro and in vivo.
    Kirveliene V; Grazeliene G; Dabkeviciene D; Micke I; Kirvelis D; Juodka B; Didziapetriene J
    Cancer Chemother Pharmacol; 2006 Jan; 57(1):65-72. PubMed ID: 16001168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.