BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 9924025)

  • 1. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC.
    Wu KJ; Polack A; Dalla-Favera R
    Science; 1999 Jan; 283(5402):676-9. PubMed ID: 9924025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [c-Myc: an iron oncogene].
    Jeanteur P
    Bull Cancer; 1999 Mar; 86(3):250. PubMed ID: 10847721
    [No Abstract]   [Full Text] [Related]  

  • 3. Iron regulatory proteins and the molecular control of mammalian iron metabolism.
    Eisenstein RS
    Annu Rev Nutr; 2000; 20():627-62. PubMed ID: 10940348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of iron metabolism in eukaryotes.
    Rouault T; Klausner R
    Curr Top Cell Regul; 1997; 35():1-19. PubMed ID: 9192174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron regulatory protein 1 is not required for the modulation of ferritin and transferrin receptor expression by iron in a murine pro-B lymphocyte cell line.
    Schalinske KL; Blemings KP; Steffen DW; Chen OS; Eisenstein RS
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10681-6. PubMed ID: 9380695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel translational control through an iron-responsive element by interaction of multifunctional protein YB-1 and IRP2.
    Ashizuka M; Fukuda T; Nakamura T; Shirasuna K; Iwai K; Izumi H; Kohno K; Kuwano M; Uchiumi T
    Mol Cell Biol; 2002 Sep; 22(18):6375-83. PubMed ID: 12192037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro.
    Habel ME; Jung D
    Biochem Biophys Res Commun; 2006 Mar; 341(4):1309-16. PubMed ID: 16466700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of coordinate control of ferritin and transferrin receptor expression during rat liver regeneration.
    Cairo G; Tacchini L; Pietrangelo A
    Hepatology; 1998 Jul; 28(1):173-8. PubMed ID: 9657110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A case report of spontaneous mutation (C33>U) in the iron-responsive element of L-ferritin causing hyperferritinemia-cataract syndrome.
    Cao W; McMahon M; Wang B; O'Connor R; Clarkson M
    Blood Cells Mol Dis; 2010 Jan; 44(1):22-7. PubMed ID: 19800271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen monoxide-mediated control of ferritin synthesis: implications for macrophage iron homeostasis.
    Kim S; Ponka P
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12214-9. PubMed ID: 12209009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferritin and the response to oxidative stress.
    Orino K; Lehman L; Tsuji Y; Ayaki H; Torti SV; Torti FM
    Biochem J; 2001 Jul; 357(Pt 1):241-7. PubMed ID: 11415455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilization of iron regulatory protein 2, IRP2, by aluminum.
    Yamanaka K; Minato N; Iwai K
    FEBS Lett; 1999 Nov; 462(1-2):216-20. PubMed ID: 10580122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internal loop/bulge and hairpin loop of the iron-responsive element of ferritin mRNA contribute to maximal iron regulatory protein 2 binding and translational regulation in the iso-iron-responsive element/iso-iron regulatory protein family.
    Ke Y; Sierzputowska-Gracz H; Gdaniec Z; Theil EC
    Biochemistry; 2000 May; 39(20):6235-42. PubMed ID: 10821699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin-1beta increases binding of the iron regulatory protein and the synthesis of ferritin by increasing the labile iron pool.
    PiƱero DJ; Hu J; Cook BM; Scaduto RC; Connor JR
    Biochim Biophys Acta; 2000 Sep; 1497(3):279-88. PubMed ID: 10996652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia post-translationally activates iron-regulatory protein 2.
    Hanson ES; Foot LM; Leibold EA
    J Biol Chem; 1999 Feb; 274(8):5047-52. PubMed ID: 9988751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased IRP1 and IRP2 RNA binding activity accompanies a reduction of the labile iron pool in HFE-expressing cells.
    Roy CN; Blemings KP; Deck KM; Davies PS; Anderson EL; Eisenstein RS; Enns CA
    J Cell Physiol; 2002 Feb; 190(2):218-26. PubMed ID: 11807826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2,3,7,8-Tetrachlorodibenzo-p-dioxin impairs iron homeostasis by modulating iron-related proteins expression and increasing the labile iron pool in mammalian cells.
    Santamaria R; Fiorito F; Irace C; De Martino L; Maffettone C; Granato GE; Di Pascale A; Iovane V; Pagnini U; Colonna A
    Biochim Biophys Acta; 2011 May; 1813(5):704-12. PubMed ID: 21333694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary iron intake modulates the activity of iron regulatory proteins and the abundance of ferritin and mitochondrial aconitase in rat liver.
    Chen OS; Schalinske KL; Eisenstein RS
    J Nutr; 1997 Feb; 127(2):238-48. PubMed ID: 9039823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variation of basal iron status, ferritin and iron regulatory protein in mice: potential for modulation of oxidative stress.
    Clothier B; Robinson S; Akhtar RA; Francis JE; Peters TJ; Raja K; Smith AG
    Biochem Pharmacol; 2000 Jan; 59(2):115-22. PubMed ID: 10810445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells.
    Richardson DR; Ponka P
    Biochim Biophys Acta; 1997 Mar; 1331(1):1-40. PubMed ID: 9325434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.