These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 9925285)
1. The effects of reverse micelles on the reaction mechanism of alpha-chymotrypsin. D'Agostino PM; Chattopadhyay SK Cancer Biochem Biophys; 1998 Nov; 16(4):387-407. PubMed ID: 9925285 [TBL] [Abstract][Full Text] [Related]
2. Kinetic coupled with UV spectral evidence for near-irreversible nonionic micellar binding of N-benzylphthalimide under the typical reaction conditions: an observation against a major assumption of the pseudophase micellar model. Cheong MY; Ariffin A; Khan MN J Phys Chem B; 2007 Oct; 111(42):12185-94. PubMed ID: 17914797 [TBL] [Abstract][Full Text] [Related]
3. Modeling of enzymatic reactions in vesicles: the case of alpha-chymotrypsin. Blocher M; Walde P; Dunn IJ Biotechnol Bioeng; 1999 Jan; 62(1):36-43. PubMed ID: 10099511 [TBL] [Abstract][Full Text] [Related]
4. Effect of urea on the enzymatic activity of a lipase entrapped in AOT-heptane-water reverse micellar solutions. Abuin E; Lissi E; Solar C J Colloid Interface Sci; 2005 Mar; 283(1):87-93. PubMed ID: 15694427 [TBL] [Abstract][Full Text] [Related]
5. [Activity of alpha-chymotrypsin immobilized in nanocapsules of poly(N,N-didodecyl-N,N-diallylammonium bromide)]. Shapiro IuE; Pykhteeva EG; Fedorova GV Bioorg Khim; 1997 Mar; 23(3):174-82. PubMed ID: 9190788 [TBL] [Abstract][Full Text] [Related]
6. Kinetic behaviour of alpha-chymotrypsin in reverse micelles. A stopped-flow study. Mao Q; Walde P; Luisi PL Eur J Biochem; 1992 Aug; 208(1):165-70. PubMed ID: 1511684 [TBL] [Abstract][Full Text] [Related]
7. [Interconnection between activity and conformational mobility of alpha-chymotrypsin in reverse micelle systems]. Kliachko NL; Bogdanova NG; Kol'tover VK; Martinek K; Levashov AV Biokhimiia; 1989 Jul; 54(7):1224-30. PubMed ID: 2553135 [TBL] [Abstract][Full Text] [Related]
8. Immobilized enzymes in reverse micelles: studies with gel-entrapped trypsin and alpha-chymotrypsin in AOT reverse micelles. Fadnavis NW; Luisi PL Biotechnol Bioeng; 1989 Apr; 33(10):1277-82. PubMed ID: 18587860 [TBL] [Abstract][Full Text] [Related]
9. Structural and catalytic properties of enzymes in reverse micelles. Creagh AL; Prausnitz JM; Blanch HW Enzyme Microb Technol; 1993 May; 15(5):383-92. PubMed ID: 7684231 [TBL] [Abstract][Full Text] [Related]
10. Cationic reverse micelles create water with super hydrogen-bond-donor capacity for enzymatic catalysis: hydrolysis of 2-naphthyl acetate by alpha-chymotrypsin. Moyano F; Falcone RD; Mejuto JC; Silber JJ; Correa NM Chemistry; 2010 Aug; 16(29):8887-93. PubMed ID: 20572177 [TBL] [Abstract][Full Text] [Related]
11. [Immobilization of modified alpha-chymotrypsin within the structure of cellulose triacetate membranes]. Kil'deeva NR; Larionova NI; Kazanskaia NF; Virnik AD Biokhimiia; 1980 Mar; 45(3):569-74. PubMed ID: 7378492 [TBL] [Abstract][Full Text] [Related]
12. [Anomalous temperature dependence of the activity of immobilized alpha-chymotrypsin preparations]. Sigolaeva LV; Eremeev NL; Kazanskaia NF Bioorg Khim; 1994 Mar; 20(3):268-73. PubMed ID: 8166753 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic reaction of silent substrates: kinetic theory and application to the serine protease chymotrypsin. Case A; Huskey WP; Stein RL Biochemistry; 2003 Apr; 42(16):4727-32. PubMed ID: 12705836 [TBL] [Abstract][Full Text] [Related]
14. Substrate effects on the enzymatic activity of alpha-chymotrypsin in reverse micelles. Mao Q; Walde P Biochem Biophys Res Commun; 1991 Aug; 178(3):1105-12. PubMed ID: 1872834 [TBL] [Abstract][Full Text] [Related]
15. Systematic approach to the quantitative voltammetric analysis of the FeIII/FeII component of the [alpha2-Fe(OH2)P2W17O61]7-/8- reduction process in buffered and unbuffered aqueous media. Guo SX; Feldberg SW; Bond AM; Callahan DL; Richardt PJ; Wedd AG J Phys Chem B; 2005 Nov; 109(43):20641-51. PubMed ID: 16853672 [TBL] [Abstract][Full Text] [Related]
16. Photosensitization ability of a water soluble zinc(II)tetramethyltetrapyridinoporphyrazinium salt in aqueous solution and biomimetic reverse micelles medium. Tempesti TC; Stockert JC; Durantini EN J Phys Chem B; 2008 Dec; 112(49):15701-7. PubMed ID: 19053687 [TBL] [Abstract][Full Text] [Related]
17. Models for enzyme superactivity in aqueous solutions of surfactants. Viparelli P; Alfani F; Cantarella M Biochem J; 1999 Dec; 344 Pt 3(Pt 3):765-73. PubMed ID: 10585863 [TBL] [Abstract][Full Text] [Related]
19. Reverse-micelle model: pH, electromagnetic field and inhibitor enzyme interaction. Chattopadhyay SK; Toews KA; Butt S; Barlett R; Brown HD Cancer Biochem Biophys; 1997 Jun; 15(4):245-55. PubMed ID: 9224560 [TBL] [Abstract][Full Text] [Related]
20. Mathematical determination of kinetic parameters for assessing the effect of the organic solvent on the selectivity of peptide synthesis with immobilized α-chymotrypsin. Bahamondes C; Wilson L; Guzmán F; Illanes A J Biosci Bioeng; 2017 Dec; 124(6):618-622. PubMed ID: 28847579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]