These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9925565)

  • 21. Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris.
    Miller AR; North JA; Wildenthal JA; Tabita FR
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new mechanism for the aerobic catabolism of dimethyl sulfide.
    Visscher PT; Taylor BF
    Appl Environ Microbiol; 1993 Nov; 59(11):3784-9. PubMed ID: 8285684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of microbiological sulfide oxidation by methanethiol and dimethyl polysulfides at natron-alkaline conditions.
    van den Bosch PL; de Graaff M; Fortuny-Picornell M; van Leerdam RC; Janssen AJ
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):579-87. PubMed ID: 19333598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dimethyl sulphide and methanethiol formation in microbial mats: potential pathways for biogenic signatures.
    Visscher PT; Baumgartner LK; Buckley DH; Rogers DR; Hogan ME; Raleigh CD; Turk KA; Des Marais DJ
    Environ Microbiol; 2003 Apr; 5(4):296-308. PubMed ID: 12662177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment.
    Liou JS; Derito CM; Madsen EL
    Environ Microbiol; 2008 Aug; 10(8):1964-77. PubMed ID: 18430012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulmonary excretion of hydrogen sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide in mice.
    Susman JL; Hornig JF; Thomae SC; Smith RP
    Drug Chem Toxicol; 1978; 1(4):327-38. PubMed ID: 755673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methyl sulfides as intermediates in the anaerobic oxidation of methane.
    Moran JJ; Beal EJ; Vrentas JM; Orphan VJ; Freeman KH; House CH
    Environ Microbiol; 2008 Jan; 10(1):162-73. PubMed ID: 17903217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thiol methylation potential in anoxic, low-pH wetland sediments and its relationship with dimethylsulfide production and organic carbon cycling.
    Stets EG; Hines ME; Kiene RP
    FEMS Microbiol Ecol; 2004 Jan; 47(1):1-11. PubMed ID: 19712341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental VOSCs--formation and degradation of dimethyl sulfide, methanethiol and related materials.
    Bentley R; Chasteen TG
    Chemosphere; 2004 Apr; 55(3):291-317. PubMed ID: 14987929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea.
    Häusler S; Weber M; Siebert C; Holtappels M; Noriega-Ortega BE; De Beer D; Ionescu D
    FEMS Microbiol Ecol; 2014 Dec; 90(3):956-69. PubMed ID: 25348393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of nonylphenol ethoxylates in estuarine sediment under aerobic and anaerobic conditions.
    Ferguson PL; Brownawell BJ
    Environ Toxicol Chem; 2003 Jun; 22(6):1189-99. PubMed ID: 12785573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid detection of sulfide-producing bacteria from sulfate and thiosulfate.
    Stilinović B; Hrenović J
    Folia Microbiol (Praha); 2004; 49(5):513-8. PubMed ID: 15702538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbiological reduction of Sb(V) in anoxic freshwater sediments.
    Kulp TR; Miller LG; Braiotta F; Webb SM; Kocar BD; Blum JS; Oremland RS
    Environ Sci Technol; 2014; 48(1):218-26. PubMed ID: 24274659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous methanethiol and dimethyl sulfide removal in a single-stage biotrickling filter packed with polyurethane foam: Performance, parameters and microbial community analysis.
    Jia T; Sun S; Chen K; Zhang L; Peng Y
    Chemosphere; 2020 Apr; 244():125460. PubMed ID: 31809922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfide formation in freshwater sediments, by sulfate-reducing microorganisms with diverse tolerance to salt.
    Rees GN; Baldwin DS; Watson GO; Hall KC
    Sci Total Environ; 2010 Dec; 409(1):134-9. PubMed ID: 20934202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of anaerobic ammonium oxidation as a nitrogen removal pathway in freshwater marsh sediments.
    Shen LD; Liu X; Wu HS
    J Appl Microbiol; 2018 Nov; 125(5):1423-1434. PubMed ID: 29979471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions.
    Rontani JF; Bonin PC; Volkman JK
    Appl Environ Microbiol; 1999 Dec; 65(12):5484-92. PubMed ID: 10584007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the effects of sodium chloride on degradation of chloramphenicol in aquaculture pond sediment.
    Chien YH; Lai HT; Liu SM
    Sci Total Environ; 1999 Oct; 239(1-3):81-7. PubMed ID: 10570835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microbial arsenic cycle in a salt-saturated, extreme environment.
    Oremland RS; Kulp TR; Blum JS; Hoeft SE; Baesman S; Miller LG; Stolz JF
    Science; 2005 May; 308(5726):1305-8. PubMed ID: 15919992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of methanethiol on the biological oxidation of sulfide at natron-alkaline conditions.
    van den Bosch PL; Fortuny-Picornell M; Janssen AJ
    Environ Sci Technol; 2009 Jan; 43(2):453-9. PubMed ID: 19238979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.