BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9925569)

  • 1. Attachment of the yeast Rhodosporidium toruloides is mediated by adhesives localized at sites of bud cell development.
    Buck JW; Andrews JH
    Appl Environ Microbiol; 1999 Feb; 65(2):465-71. PubMed ID: 9925569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localized, positive charge mediates adhesion of rhodosporidium toruloides to barley leaves and polystyrene.
    Buck JW; Andrews JH
    Appl Environ Microbiol; 1999 May; 65(5):2179-83. PubMed ID: 10224017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attachment Capability of Antagonistic Yeast Rhodotorula glutinis to Botrytis cinerea Contributes to Biocontrol Efficacy.
    Li B; Peng H; Tian S
    Front Microbiol; 2016; 7():601. PubMed ID: 27199931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa.
    Allen TW; Burpee LL; Buck JW
    Can J Microbiol; 2004 Dec; 50(12):1041-8. PubMed ID: 15714235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis.
    Yamada R; Kashihara T; Ogino H
    World J Microbiol Biotechnol; 2017 May; 33(5):99. PubMed ID: 28429279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate-reactive proteins (glycosidases and lectins) and fibronectin.
    Carter WG; Rauvala H; Hakomori SI
    J Cell Biol; 1981 Jan; 88(1):138-48. PubMed ID: 7204483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization the carotenoid productions and profiles of three Rhodosporidium toruloides mutants from Agrobacterium tumefaciens-mediated transformation.
    Lin X; Gao N; Liu S; Zhang S; Song S; Ji C; Dong X; Su Y; Zhao ZK; Zhu B
    Yeast; 2017 Aug; 34(8):335-342. PubMed ID: 28426167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications.
    Park YK; Nicaud JM; Ledesma-Amaro R
    Trends Biotechnol; 2018 Mar; 36(3):304-317. PubMed ID: 29132754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation.
    Sun W; Yang X; Wang X; Lin X; Wang Y; Zhang S; Luan Y; Zhao ZK
    Biotechnol Lett; 2017 Jul; 39(7):1001-1007. PubMed ID: 28337556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation.
    Liu H; Jiao X; Wang Y; Yang X; Sun W; Wang J; Zhang S; Zhao ZK
    FEMS Yeast Res; 2017 Mar; 17(2):. PubMed ID: 28369336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis.
    Liu Y; Koh CMJ; Yap SA; Du M; Hlaing MM; Ji L
    BMC Microbiol; 2018 Feb; 18(1):14. PubMed ID: 29466942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of D-arabitol from D-xylose by the oleaginous yeast Rhodosporidium toruloides IFO0880.
    Jagtap SS; Rao CV
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):143-151. PubMed ID: 29127468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Torularhodin Production in Rhodosporidium toruloides by Agrobacterium tumefaciens-Mediated Transformation and Culture Condition Optimization.
    Bao R; Gao N; Lv J; Ji C; Liang H; Li S; Yu C; Wang Z; Lin X
    J Agric Food Chem; 2019 Jan; 67(4):1156-1164. PubMed ID: 30607946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a sufficient and effective procedure for transformation of an oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16.
    Tsai YY; Ohashi T; Kanazawa T; Polburee P; Misaki R; Limtong S; Fujiyama K
    Curr Genet; 2017 May; 63(2):359-371. PubMed ID: 27400920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed CRISPR-Cas9-Based Genome Editing of
    Otoupal PB; Ito M; Arkin AP; Magnuson JK; Gladden JM; Skerker JM
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides.
    Lin X; Wang Y; Zhang S; Zhu Z; Zhou YJ; Yang F; Sun W; Wang X; Zhao ZK
    FEMS Yeast Res; 2014 Jun; 14(4):547-55. PubMed ID: 24495153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined mutagenesis of Rhodosporidium toruloides for improved production of carotenoids and lipids.
    Zhang C; Shen H; Zhang X; Yu X; Wang H; Xiao S; Wang J; Zhao ZK
    Biotechnol Lett; 2016 Oct; 38(10):1733-8. PubMed ID: 27311308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a flippase-mediated maker recycling protocol for the oleaginous yeast Rhodosporidium toruloides.
    Sun W; Yang X; Wang X; Jiao X; Zhang S; Luan Y; Zhao ZK
    Biotechnol Lett; 2018 Jun; 40(6):933-940. PubMed ID: 29605943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of oleaginous yeast (Rhodosporidium toruloides) mutants tolerant of sugarcane bagasse hydrolysate.
    Kitahara Y; Yin T; Zhao X; Wachi M; Du W; Liu D
    Biosci Biotechnol Biochem; 2014; 78(2):336-42. PubMed ID: 25036690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides.
    Zhuang X; Kilian O; Monroe E; Ito M; Tran-Gymfi MB; Liu F; Davis RW; Mirsiaghi M; Sundstrom E; Pray T; Skerker JM; George A; Gladden JM
    Microb Cell Fact; 2019 Mar; 18(1):54. PubMed ID: 30885220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.