These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 9925621)
1. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Unge A; Tombolini R; Molbak L; Jansson JK Appl Environ Microbiol; 1999 Feb; 65(2):813-21. PubMed ID: 9925621 [TBL] [Abstract][Full Text] [Related]
2. Use of a novel nonantibiotic triple marker gene cassette to monitor high survival of Pseudomonas fluorescens SBW25 on winter wheat in the field. Jäderlund L; Hellman M; Sundh I; Bailey MJ; Jansson JK FEMS Microbiol Ecol; 2008 Feb; 63(2):156-68. PubMed ID: 18093144 [TBL] [Abstract][Full Text] [Related]
3. Monitoring physiological status of GFP-tagged Pseudomonas fluorescens SBW25 under different nutrient conditions and in soil by flow cytometry. Maraha N; Backman A; Jansson JK FEMS Microbiol Ecol; 2004 Dec; 51(1):123-32. PubMed ID: 16329861 [TBL] [Abstract][Full Text] [Related]
4. Use of green fluorescent protein and luciferase biomarkers to monitor survival and activity of Arthrobacter chlorophenolicus A6 cells during degradation of 4-chlorophenol in soil. Elväng AM; Westerberg K; Jernberg C; Jansson JK Environ Microbiol; 2001 Jan; 3(1):32-42. PubMed ID: 11225721 [TBL] [Abstract][Full Text] [Related]
5. Green fluorescent protein-based direct viable count to verify a viable but non-culturable state of Salmonella typhi in environmental samples. Cho JC; Kim SJ J Microbiol Methods; 1999 Jun; 36(3):227-35. PubMed ID: 10379808 [TBL] [Abstract][Full Text] [Related]
6. Effect of starvation and the viable-but-nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506. Lowder M; Unge A; Maraha N; Jansson JK; Swiggett J; Oliver JD Appl Environ Microbiol; 2000 Aug; 66(8):3160-5. PubMed ID: 10919764 [TBL] [Abstract][Full Text] [Related]
7. Monitoring Population Size, Activity, and Distribution of gfp-luxAB-Tagged Pseudomonas fluorescens SBW25 during Colonization of Wheat. Unge A; Jansson J Microb Ecol; 2001 Feb; 41(4):290-300. PubMed ID: 12032602 [TBL] [Abstract][Full Text] [Related]
8. Effects of temperature on detection of plasmid or chromosomally encoded gfp- and lux-labeled Pseudomonas fluorescens in soil. Bunker ST; Bates TC; Oliver JD Environ Biosafety Res; 2004; 3(2):83-90. PubMed ID: 15612505 [TBL] [Abstract][Full Text] [Related]
9. Luminometric measurement of population activity of genetically modified Pseudomonas fluorescens in the soil. Meikle A; Killham K; Prosser JI; Glover LA FEMS Microbiol Lett; 1992 Dec; 78(2-3):217-20. PubMed ID: 1490601 [TBL] [Abstract][Full Text] [Related]
10. A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. Cassidy MB; Leung KT; Lee H; Trevors JT J Microbiol Methods; 2000 Apr; 40(2):135-45. PubMed ID: 10699669 [TBL] [Abstract][Full Text] [Related]
11. Reliable use of green fluorescent protein in fluorescent pseudomonads. Timms-Wilson TM; Bailey MJ J Microbiol Methods; 2001 Jul; 46(1):77-80. PubMed ID: 11412916 [TBL] [Abstract][Full Text] [Related]
12. Escherichia coli survival in groundwater and effluent measured using a combination of propidium iodide and the green fluorescent protein. Banning N; Toze S; Mee BJ J Appl Microbiol; 2002; 93(1):69-76. PubMed ID: 12067376 [TBL] [Abstract][Full Text] [Related]
13. Comparison of a range of green fluorescent protein-tagging vectors for monitoring a microbial inoculant in soil. Dandie CE; Thomas SM; McClure NC Lett Appl Microbiol; 2001 Jan; 32(1):26-30. PubMed ID: 11169037 [TBL] [Abstract][Full Text] [Related]
14. Direct detection and quantification of horizontal gene transfer by using flow cytometry and gfp as a reporter gene. Sørensen SJ; Sørensen AH; Hansen LH; Oregaard G; Veal D Curr Microbiol; 2003 Aug; 47(2):129-33. PubMed ID: 14506860 [TBL] [Abstract][Full Text] [Related]
15. Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Kragelund L; Hosbond C; Nybroe O Appl Environ Microbiol; 1997 Dec; 63(12):4920-8. PubMed ID: 9406412 [TBL] [Abstract][Full Text] [Related]
16. Presence of N-acyl homoserine lactones in soil detected by a whole-cell biosensor and flow cytometry. Burmølle M; Hansen LH; Oregaard G; Sørensen SJ Microb Ecol; 2003 Mar; 45(3):226-36. PubMed ID: 12658522 [TBL] [Abstract][Full Text] [Related]
17. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil. Koch B; Worm J; Jensen LE; Højberg O; Nybroe O Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905 [TBL] [Abstract][Full Text] [Related]
18. Impact of temperature on the physiological status of a potential bioremediation inoculant, Arthrobacter chlorophenolicus A6. Backman A; Maraha N; Jansson JK Appl Environ Microbiol; 2004 May; 70(5):2952-8. PubMed ID: 15128556 [TBL] [Abstract][Full Text] [Related]
19. Polychlorinated biphenyl (PCB) degradation and persistence of a gfp-marked Ralstonia eutropha H850 in PCB-contaminated soil. Abbey AM; Beaudette LA; Lee H; Trevors JT Appl Microbiol Biotechnol; 2003 Dec; 63(2):222-30. PubMed ID: 12898060 [TBL] [Abstract][Full Text] [Related]
20. Wave-like distribution patterns of gfp-marked Pseudomonas fluorescens along roots of wheat plants grown in two soils. van Bruggen AH; Semenov AM; Zelenev VV; Semenov AV; Raaijmakers JM; Sayler RJ; de Vos O Microb Ecol; 2008 Apr; 55(3):466-75. PubMed ID: 17934689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]