These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 9925829)
1. Functional consequences of a decreased potassium affinity in a potassium channel pore. Ion interactions and C-type inactivation. Ogielska EM; Aldrich RW J Gen Physiol; 1999 Feb; 113(2):347-58. PubMed ID: 9925829 [TBL] [Abstract][Full Text] [Related]
2. A mutation in S6 of Shaker potassium channels decreases the K+ affinity of an ion binding site revealing ion-ion interactions in the pore. Ogielska EM; Aldrich RW J Gen Physiol; 1998 Aug; 112(2):243-57. PubMed ID: 9689030 [TBL] [Abstract][Full Text] [Related]
3. Functional identification of ion binding sites at the internal end of the pore in Shaker K+ channels. Thompson J; Begenisich T J Physiol; 2003 May; 549(Pt 1):107-20. PubMed ID: 12665608 [TBL] [Abstract][Full Text] [Related]
4. External pore collapse as an inactivation mechanism for Kv4.3 K+ channels. Eghbali M; Olcese R; Zarei MM; Toro L; Stefani E J Membr Biol; 2002 Jul; 188(1):73-86. PubMed ID: 12172648 [TBL] [Abstract][Full Text] [Related]
5. Effects of outer mouth mutations on hERG channel function: a comparison with similar mutations in the Shaker channel. Fan JS; Jiang M; Dun W; McDonald TV; Tseng GN Biophys J; 1999 Jun; 76(6):3128-40. PubMed ID: 10354437 [TBL] [Abstract][Full Text] [Related]
6. Residues in a jellyfish shaker-like channel involved in modulation by external potassium. Grigoriev NG; Spafford JD; Spencer AN J Neurophysiol; 1999 Oct; 82(4):1740-7. PubMed ID: 10515963 [TBL] [Abstract][Full Text] [Related]
7. Binding of kappa-conotoxin PVIIA to Shaker K+ channels reveals different K+ and Rb+ occupancies within the ion channel pore. Boccaccio A; Conti F; Olivera BM; Terlau H J Gen Physiol; 2004 Jul; 124(1):71-81. PubMed ID: 15226365 [TBL] [Abstract][Full Text] [Related]
8. Two stable, conducting conformations of the selectivity filter in Shaker K+ channels. Thompson J; Begenisich T J Gen Physiol; 2005 Jun; 125(6):619-29. PubMed ID: 15897293 [TBL] [Abstract][Full Text] [Related]
9. Macroscopic Na+ currents in the "Nonconducting" Shaker potassium channel mutant W434F. Starkus JG; Kuschel L; Rayner MD; Heinemann SH J Gen Physiol; 1998 Jul; 112(1):85-93. PubMed ID: 9649585 [TBL] [Abstract][Full Text] [Related]
10. Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins. Oliva C; González V; Naranjo D Biophys J; 2005 Aug; 89(2):1009-19. PubMed ID: 15923220 [TBL] [Abstract][Full Text] [Related]
11. Slow inactivation in Shaker K channels is delayed by intracellular tetraethylammonium. González-Pérez V; Neely A; Tapia C; González-Gutiérrez G; Contreras G; Orio P; Lagos V; Rojas G; Estévez T; Stack K; Naranjo D J Gen Physiol; 2008 Dec; 132(6):633-50. PubMed ID: 19029372 [TBL] [Abstract][Full Text] [Related]
12. Affinity and location of an internal K+ ion binding site in shaker K channels. Thompson J; Begenisich T J Gen Physiol; 2001 May; 117(5):373-84. PubMed ID: 11331347 [TBL] [Abstract][Full Text] [Related]
14. Ion conduction through C-type inactivated Shaker channels. Starkus JG; Kuschel L; Rayner MD; Heinemann SH J Gen Physiol; 1997 Nov; 110(5):539-50. PubMed ID: 9348326 [TBL] [Abstract][Full Text] [Related]
15. Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes. Shieh RC; Lee YL J Physiol; 2001 Sep; 535(Pt 2):359-70. PubMed ID: 11533129 [TBL] [Abstract][Full Text] [Related]
16. Determinants of voltage-dependent gating and open-state stability in the S5 segment of Shaker potassium channels. J Gen Physiol; ; . PubMed ID: 10435999 [TBL] [Abstract][Full Text] [Related]