These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9925929)

  • 1. Differential destabilization of repetitive sequence hybrids in fluorescence in situ hybridization.
    Hozier JC; Scalzi JM; Clase AC; Davis LM; Liechty MC
    Cytogenet Cell Genet; 1998; 83(1-2):60-3. PubMed ID: 9925929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence in situ hybridization and comparative genomic hybridization.
    Gorman P; Roylance R
    Methods Mol Med; 2006; 120():269-95. PubMed ID: 16491607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative microscopy after fluorescence in situ hybridization - a comparison between repeat-depleted and non-depleted DNA probes.
    Rauch J; Wolf D; Craig JM; Hausmann M; Cremer C
    J Biochem Biophys Methods; 2000 Jul; 44(1-2):59-72. PubMed ID: 10889276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient chemical method to generate repetitive sequences depleted DNA probes.
    Lucas JN; Wu X; Guo E; Chi LE; Chen Z
    Am J Med Genet A; 2006 Oct; 140(19):2115-20. PubMed ID: 16838320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved technique for analysis of formalin-fixed, paraffin-embedded tumors by fluorescence in situ hybridization.
    Hyytinen E; Visakorpi T; Kallioniemi A; Kallioniemi OP; Isola JJ
    Cytometry; 1994 Jun; 16(2):93-9. PubMed ID: 7924686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of repetitive sequences from FISH probes using PCR-assisted affinity chromatography.
    Craig JM; Kraus J; Cremer T
    Hum Genet; 1997 Sep; 100(3-4):472-6. PubMed ID: 9272175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH.
    Dugan LC; Pattee MS; Williams J; Eklund M; Sorensen K; Bedford JS; Christian AT
    Chromosome Res; 2005; 13(1):27-32. PubMed ID: 15791409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences.
    van Gijlswijk RP; Wiegant J; Vervenne R; Lasan R; Tanke HJ; Raap AK
    Cytogenet Cell Genet; 1996; 75(4):258-62. PubMed ID: 9067437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in fluorescence in situ hybridization.
    Raap AK
    Mutat Res; 1998 May; 400(1-2):287-98. PubMed ID: 9685683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes.
    Durm M; Haar FM; Hausmann M; Ludwig H; Cremer C
    Z Naturforsch C J Biosci; 1996; 51(3-4):253-61. PubMed ID: 8639232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Selective chromosome painting using in situ hybridization].
    Pérez Losada A; Woessner S; Solé F; Caballín MR; Florensa L
    Sangre (Barc); 1993 Apr; 38(2):151-4. PubMed ID: 8516730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent In Situ Hybridization Using Oligonucleotide-Based Probes.
    Braz GT; Yu F; do Vale Martins L; Jiang J
    Methods Mol Biol; 2020; 2148():71-83. PubMed ID: 32394375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ localization of yeast artificial chromosome sequences on tomato and potato metaphase chromosomes.
    Fuchs J; Kloos DU; Ganal MW; Schubert I
    Chromosome Res; 1996 Jun; 4(4):277-81. PubMed ID: 8817067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Non-radioactive in situ hybridization with chromosome-specific probes].
    Bryndorf TE; Christensen B; Philip J
    Ugeskr Laeger; 1992 May; 154(21):1487-91. PubMed ID: 1598719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soybean chromosome painting: a strategy for somatic cytogenetics.
    Shi L; Zhu T; Morgante M; Rafalski JA; Keim P
    J Hered; 1996; 87(4):308-13. PubMed ID: 8776877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei.
    van Dekken H; Arkesteijn GJ; Visser JW; Bauman JG
    Cytometry; 1990; 11(1):153-64. PubMed ID: 2307056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-based design of single-copy genomic DNA probes for fluorescence in situ hybridization.
    Rogan PK; Cazcarro PM; Knoll JH
    Genome Res; 2001 Jun; 11(6):1086-94. PubMed ID: 11381034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence in situ hybridization for molecular cytogenetic analysis in filamentous fungi.
    Tsuchiya D; Taga M
    Methods Mol Biol; 2010; 638():235-57. PubMed ID: 20238274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strand-specific FISH reveals orientation of chromosome 18 alphoid DNA.
    Goodwin E; Meyne J
    Cytogenet Cell Genet; 1993; 63(2):126-7. PubMed ID: 8467711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.