These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9926819)

  • 1. Instrumental learning within the spinal cord: I. Behavioral properties.
    Grau JW; Barstow DG; Joynes RL
    Behav Neurosci; 1998 Dec; 112(6):1366-86. PubMed ID: 9926819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instrumental learning within the spinal cord: IV. Induction and retention of the behavioral deficit observed after noncontingent shock.
    Crown ED; Ferguson AR; Joynes RL; Grau JW
    Behav Neurosci; 2002 Dec; 116(6):1032-51. PubMed ID: 12492302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preserving and restoring behavioral potential within the spinal cord using an instrumental training paradigm.
    Crown ED; Grau JW
    J Neurophysiol; 2001 Aug; 86(2):845-55. PubMed ID: 11495955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instrumental avoidance conditioning of increased leg lowering in the spinal rat.
    Sherman BS; Hoehler FK; Buerger AA
    Physiol Behav; 1982 Jul; 29(1):123-8. PubMed ID: 7122718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental learning within the spinal cord: III. Prior exposure to noncontingent shock induces a behavioral deficit that is blocked by an opioid antagonist.
    Joynes RL; Grau JW
    Neurobiol Learn Mem; 2004 Jul; 82(1):35-51. PubMed ID: 15183169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumental learning within the spinal cord: V. Evidence the behavioral deficit observed after noncontingent nociceptive stimulation reflects an intraspinal modification.
    Joynes RL; Ferguson AR; Crown ED; Patton BC; Grau JW
    Behav Brain Res; 2003 May; 141(2):159-70. PubMed ID: 12742252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graded acquisition of an instrumental avoidance response by the spinal rat.
    Chopin SF; Buerger AA
    Physiol Behav; 1975 Aug; 15(2):155-8. PubMed ID: 1187851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPA receptor mediated behavioral plasticity in the isolated rat spinal cord.
    Hoy KC; Huie JR; Grau JW
    Behav Brain Res; 2013 Jan; 236(1):319-326. PubMed ID: 22982187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instrumental learning within the rat spinal cord: localization of the essential neural circuit.
    Liu GT; Ferguson AR; Crown ED; Bopp AC; Miranda RC; Grau JW
    Behav Neurosci; 2005 Apr; 119(2):538-47. PubMed ID: 15839800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrathecal infusions of anisomycin impact the learning deficit but not the learning effect observed in spinal rats that have received instrumental training.
    Baumbauer KM; Young EE; Hoy KC; France JL; Joynes RL
    Behav Brain Res; 2006 Oct; 173(2):299-309. PubMed ID: 16914213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposure to intermittent nociceptive stimulation under pentobarbital anesthesia disrupts spinal cord function in rats.
    Washburn SN; Patton BC; Ferguson AR; Hudson KL; Grau JW
    Psychopharmacology (Berl); 2007 Jun; 192(2):243-52. PubMed ID: 17297638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instrumental learning within the spinal cord. II. Evidence for central mediation.
    Crown ED; Ferguson AR; Joynes RL; Grau JW
    Physiol Behav; 2002 Nov; 77(2-3):259-67. PubMed ID: 12419402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instrumental learning within the spinal cord: VI. The NMDA receptor antagonist, AP5, disrupts the acquisition and maintenance of an acquired flexion response.
    Joynes RL; Janjua K; Grau JW
    Behav Brain Res; 2004 Oct; 154(2):431-8. PubMed ID: 15313031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that descending serotonergic systems protect spinal cord plasticity against the disruptive effect of uncontrollable stimulation.
    Crown ED; Grau JW
    Exp Neurol; 2005 Nov; 196(1):164-76. PubMed ID: 16139268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrumental avoidance conditioning in the spinal rat.
    Chopin SF; Buerger AA
    Brain Res Bull; 1976; 1(2):177-83. PubMed ID: 974801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg position learning in the cockroach nerve cord using an analog technique.
    Eisenstein EM; Carlson AD
    Physiol Behav; 1994 Oct; 56(4):687-91. PubMed ID: 7800734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence That the Central Nervous System Can Induce a Modification at the Neuromuscular Junction That Contributes to the Maintenance of a Behavioral Response.
    Hoy KC; Strain MM; Turtle JD; Lee KH; Huie JR; Hartman JJ; Tarbet MM; Harlow ML; Magnuson DSK; Grau JW
    J Neurosci; 2020 Nov; 40(48):9186-9209. PubMed ID: 33097637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instrumental avoidance conditioning in spinal vertebrates.
    Buerger AA; Chopin SF
    Adv Psychobiol; 1976; 3():437-61. PubMed ID: 788482
    [No Abstract]   [Full Text] [Related]  

  • 19. Instrumental conditioning of leg position in chronic spinal frog: before and after sciatic section.
    Farel PB; Buerger AA
    Brain Res; 1972 Dec; 47(2):345-51. PubMed ID: 4539343
    [No Abstract]   [Full Text] [Related]  

  • 20. Timing in the absence of supraspinal input I: variable, but not fixed, spaced stimulation of the sciatic nerve undermines spinally-mediated instrumental learning.
    Baumbauer KM; Hoy KC; Huie JR; Hughes AJ; Woller SA; Puga DA; Setlow B; Grau JW
    Neuroscience; 2008 Sep; 155(4):1030-47. PubMed ID: 18674601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.