BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 9927331)

  • 21. Signal transduction and regulation of melatonin synthesis in bovine pinealocytes: impact of adrenergic, peptidergic and cholinergic stimuli.
    Schomerus C; Laedtke E; Olcese J; Weller JL; Klein DC; Korf HW
    Cell Tissue Res; 2002 Sep; 309(3):417-28. PubMed ID: 12195298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis.
    Coon SL; Roseboom PH; Baler R; Weller JL; Namboodiri MA; Koonin EV; Klein DC
    Science; 1995 Dec; 270(5242):1681-3. PubMed ID: 7502081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cannabinoids attenuate norepinephrine-induced melatonin biosynthesis in the rat pineal gland by reducing arylalkylamine N-acetyltransferase activity without involvement of cannabinoid receptors.
    Koch M; Dehghani F; Habazettl I; Schomerus C; Korf HW
    J Neurochem; 2006 Jul; 98(1):267-78. PubMed ID: 16805813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serine/threonine phosphatase inhibitors decrease adrenergic arylalkylamine n-acetyltransferase induction in the rat pineal gland.
    Spessert R; Rapp M; Vollrath L
    J Neuroendocrinol; 2001 Jul; 13(7):581-7. PubMed ID: 11442772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of the expression of serotonin N-acetyltransferase gene in Japanese quail (Coturnix japonica): I. Rhythmic pattern and effect of light.
    Kato H; Fu Z; Kotera N; Sugahara K; Kubo T
    J Pineal Res; 1999 Aug; 27(1):24-33. PubMed ID: 10451021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms regulating melatonin synthesis in the mammalian pineal organ.
    Schomerus C; Korf HW
    Ann N Y Acad Sci; 2005 Dec; 1057():372-83. PubMed ID: 16399907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of the expression of serotonin N-acetyltransferase gene in Japanese quail (Coturnix japonica): II. Effect of vitamin A deficiency.
    Fu Z; Kato H; Kotera N; Sugahara K; Kubo T
    J Pineal Res; 1999 Aug; 27(1):34-41. PubMed ID: 10451022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The pineal gland and melatonin: molecular and pharmacologic regulation.
    Borjigin J; Li X; Snyder SH
    Annu Rev Pharmacol Toxicol; 1999; 39():53-65. PubMed ID: 10331076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhythmic transcription: the molecular basis of circadian melatonin synthesis.
    Foulkes NS; Whitmore D; Sassone-Corsi P
    Biol Cell; 1997 Nov; 89(8):487-94. PubMed ID: 9618898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antisense experiments reveal molecular details on mechanisms of ICER suppressing cAMP-inducible genes in rat pinealocytes.
    Pfeffer M; Maronde E; Korf HW; Stehle JH
    J Pineal Res; 2000 Aug; 29(1):24-33. PubMed ID: 10949537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UV-A light regulation of arylalkylamine N-acetyltransferase activity in the chick pineal gland: role of cAMP and proteasomal proteolysis.
    Rosiak J; Michael Iuvone P; Zawilska JB
    J Pineal Res; 2005 Nov; 39(4):419-24. PubMed ID: 16207298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rodent Aanat: intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland.
    Humphries A; Wells T; Baler R; Klein DC; Carter DA
    Mol Cell Endocrinol; 2007 May; 270(1-2):43-9. PubMed ID: 17363136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic AMP-inducible genes respond uniformly to seasonal lighting conditions in the rat pineal gland.
    Spessert R; Gupta BB; Rohleder N; Gerhold S; Engel L
    Neuroscience; 2006 Dec; 143(2):607-13. PubMed ID: 16962714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The phototransduction cascade in the isolated chick pineal gland revisited.
    Holthues H; Vollrath L
    Brain Res; 2004 Mar; 999(2):175-80. PubMed ID: 14759496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphodiesterase 10A in the rat pineal gland: localization, daily and seasonal regulation of expression and influence on signal transduction.
    Spiwoks-Becker I; Wolloscheck T; Rickes O; Kelleher DK; Rohleder N; Weyer V; Spessert R
    Neuroendocrinology; 2011; 94(2):113-23. PubMed ID: 21474921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function.
    Gothilf Y; Coon SL; Toyama R; Chitnis A; Namboodiri MA; Klein DC
    Endocrinology; 1999 Oct; 140(10):4895-903. PubMed ID: 10499549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue-specific transgenic knockdown of Fos-related antigen 2 (Fra-2) expression mediated by dominant negative Fra-2.
    Smith M; Burke Z; Humphries A; Wells T; Klein D; Carter D; Baler R
    Mol Cell Biol; 2001 Jun; 21(11):3704-13. PubMed ID: 11340164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A differential role of CREB phosphorylation in cAMP-inducible gene expression in the rat pineal.
    Spessert R; Rapp M; Jastrow H; Karabul N; Blum F; Vollrath L
    Brain Res; 2000 May; 864(2):270-80. PubMed ID: 10802034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): structure, chromosomal localization, and tissue expression.
    Coon SL; Mazuruk K; Bernard M; Roseboom PH; Klein DC; Rodriguez IR
    Genomics; 1996 May; 34(1):76-84. PubMed ID: 8661026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuronal expression of arylalkylamine N-acetyltransferase (AANAT) mRNA in the rat brain.
    Uz T; Qu T; Sugaya K; Manev H
    Neurosci Res; 2002 Apr; 42(4):309-16. PubMed ID: 11985883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.