BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9927495)

  • 1. Neuroprotective effects of gelsolin during murine stroke.
    Endres M; Fink K; Zhu J; Stagliano NE; Bondada V; Geddes JW; Azuma T; Mattson MP; Kwiatkowski DJ; Moskowitz MA
    J Clin Invest; 1999 Feb; 103(3):347-54. PubMed ID: 9927495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons.
    Furukawa K; Fu W; Li Y; Witke W; Kwiatkowski DJ; Mattson MP
    J Neurosci; 1997 Nov; 17(21):8178-86. PubMed ID: 9334393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis.
    Kronenberg G; Gertz K; Baldinger T; Kirste I; Eckart S; Yildirim F; Ji S; Heuser I; Schröck H; Hörtnagl H; Sohr R; Djoufack PC; Jüttner R; Glass R; Przesdzing I; Kumar J; Freyer D; Hellweg R; Kettenmann H; Fink KB; Endres M
    J Neurosci; 2010 Mar; 30(9):3419-31. PubMed ID: 20203201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cytoskeletal modifications on Ca2+ influx after cerebral ischemia.
    Fink KB; Paehr M; Djoufack PC; Weissbrich C; Bösel J; Endres M
    Amino Acids; 2002; 23(1-3):325-9. PubMed ID: 12373554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of gelsolin in the actin filament regulation of cardiac L-type calcium channels.
    Lader AS; Kwiatkowski DJ; Cantiello HF
    Am J Physiol; 1999 Dec; 277(6):C1277-83. PubMed ID: 10600780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin.
    Montalbetti N; Li Q; Timpanaro GA; González-Perrett S; Dai XQ; Chen XZ; Cantiello HF
    J Physiol; 2005 Jul; 566(Pt 2):309-25. PubMed ID: 15845576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid turnover of actin in dendritic spines and its regulation by activity.
    Star EN; Kwiatkowski DJ; Murthy VN
    Nat Neurosci; 2002 Mar; 5(3):239-46. PubMed ID: 11850630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of fibroblast migration on actin severing activity of gelsolin.
    Arora PD; McCulloch CA
    J Biol Chem; 1996 Aug; 271(34):20516-23. PubMed ID: 8702793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein.
    Barkalow K; Witke W; Kwiatkowski DJ; Hartwig JH
    J Cell Biol; 1996 Jul; 134(2):389-99. PubMed ID: 8707824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelsolin-mediated actin filament severing in crowded environments.
    Heidings JB; Demosthene B; Merlino TR; Castaneda N; Kang EH
    Biochem Biophys Res Commun; 2020 Nov; 532(4):548-554. PubMed ID: 32900483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gelsolin mediates calcium-dependent disassembly of Listeria actin tails.
    Larson L; Arnaudeau S; Gibson B; Li W; Krause R; Hao B; Bamburg JR; Lew DP; Demaurex N; Southwick F
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1921-6. PubMed ID: 15671163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal gelsolin prevents apoptosis by enhancing actin depolymerization.
    Harms C; Bösel J; Lautenschlager M; Harms U; Braun JS; Hörtnagl H; Dirnagl U; Kwiatkowski DJ; Fink K; Endres M
    Mol Cell Neurosci; 2004 Jan; 25(1):69-82. PubMed ID: 14962741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of actin cytoskeleton causes internalization of Ca(v)1.3 (alpha 1D) L-type calcium channels in salamander retinal neurons.
    Cristofanilli M; Mizuno F; Akopian A
    Mol Vis; 2007 Aug; 13():1496-507. PubMed ID: 17893673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity.
    Vemula V; Huber T; Ušaj M; Bugyi B; Månsson A
    J Biol Chem; 2021; 296():100181. PubMed ID: 33303625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of actin rearrangements mediating platelet activation.
    Hartwig JH
    J Cell Biol; 1992 Sep; 118(6):1421-42. PubMed ID: 1325975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular chaperone CCT modulates the activity of the actin filament severing and capping protein gelsolin in vitro.
    Svanström A; Grantham J
    Cell Stress Chaperones; 2016 Jan; 21(1):55-62. PubMed ID: 26364302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of the filamentous actin cytoskeleton is necessary for the activation of store-operated Ca2+ channels, but not other types of plasma-membrane Ca2+ channels, in rat hepatocytes.
    Wang YJ; Gregory RB; Barritt GJ
    Biochem J; 2002 Apr; 363(Pt 1):117-26. PubMed ID: 11903054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VASP protects actin filaments from gelsolin: an in vitro study with implications for platelet actin reorganizations.
    Bearer EL; Prakash JM; Manchester RD; Allen PG
    Cell Motil Cytoskeleton; 2000 Dec; 47(4):351-64. PubMed ID: 11093254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of actin filament organization in CFTR activation.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S75-80. PubMed ID: 11845308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The actin filament-severing domain of plasma gelsolin.
    Chaponnier C; Janmey PA; Yin HL
    J Cell Biol; 1986 Oct; 103(4):1473-81. PubMed ID: 3021782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.