These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 9927664)

  • 1. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism.
    Ha T; Ting AY; Liang J; Caldwell WB; Deniz AA; Chemla DS; Schultz PG; Weiss S
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):893-8. PubMed ID: 9927664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence energy transfer indicates similar transient and equilibrium intermediates in staphylococcal nuclease folding.
    Nishimura C; Riley R; Eastman P; Fink AL
    J Mol Biol; 2000 Jun; 299(4):1133-46. PubMed ID: 10843864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of fluorescence methods to monitor unfolding transitions in proteins.
    Eftink MR
    Biophys J; 1994 Feb; 66(2 Pt 1):482-501. PubMed ID: 8161701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of multiphasic reactions by the combination of fluorescence total-intensity and anisotropy stopped-flow kinetic experiments.
    Otto MR; Lillo MP; Beechem JM
    Biophys J; 1994 Dec; 67(6):2511-21. PubMed ID: 7696490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational flexibility in a staphylococcal nuclease mutant K45C from time-resolved resonance energy transfer measurements.
    Wu P; Brand L
    Biochemistry; 1994 Aug; 33(34):10457-62. PubMed ID: 8068683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain-specific folding kinetics of staphylococcal nuclease observed through single-molecule FRET in a microfluidic mixer.
    Zhi Z; Liu P; Wang P; Huang Y; Zhao XS
    Chemphyschem; 2011 Dec; 12(18):3515-8. PubMed ID: 22095840
    [No Abstract]   [Full Text] [Related]  

  • 7. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations.
    Deniz AA; Dahan M; Grunwell JR; Ha T; Faulhaber AE; Chemla DS; Weiss S; Schultz PG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3670-5. PubMed ID: 10097095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorientational dynamics of enzymes adsorbed on quartz: a temperature-dependent time-resolved TIRF anisotropy study.
    Czeslik C; Royer C; Hazlett T; Mantulin W
    Biophys J; 2003 Apr; 84(4):2533-41. PubMed ID: 12668461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of kinetics of formation of helices and hydrophobic core during the folding of staphylococcal nuclease from acid.
    Chen HM; Tsong TY
    Biophys J; 1994 Jan; 66(1):40-5. PubMed ID: 8130346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact dimension of denatured states of staphylococcal nuclease.
    Chow CY; Wu MC; Fang HJ; Hu CK; Chen HM; Tsong TY
    Proteins; 2008 Aug; 72(3):901-9. PubMed ID: 18275079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subdomain-specific collapse of denatured staphylococcal nuclease revealed by single molecule fluorescence resonance energy transfer measurements.
    Liu P; Meng X; Qu P; Zhao XS; Wang CC
    J Phys Chem B; 2009 Sep; 113(35):12030-6. PubMed ID: 19678648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational features of a truncated staphylococcal nuclease R (SNR135) and their implications for catalysis.
    Zhou B; Jing GZ
    Arch Biochem Biophys; 1998 Dec; 360(1):33-40. PubMed ID: 9826426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perchlorate-induced conformational transition of Staphylococcal nuclease: evidence for an equilibrium unfolding intermediate.
    Maity H; Eftink MR
    Arch Biochem Biophys; 2004 Nov; 431(1):119-23. PubMed ID: 15464733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-conA-SG28 mutant.
    Eftink MR; Gryczynski I; Wiczk W; Laczko G; Lakowicz JR
    Biochemistry; 1991 Sep; 30(37):8945-53. PubMed ID: 1892812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal fluorescence coincidence analysis: an approach to ultra high-throughput screening.
    Winkler T; Kettling U; Koltermann A; Eigen M
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1375-8. PubMed ID: 9990031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of tryptophan analogues into staphylococcal nuclease, its V66W mutant, and Delta 137-149 fragment: spectroscopic studies.
    Wong CY; Eftink MR
    Biochemistry; 1998 Jun; 37(25):8938-46. PubMed ID: 9636035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating and probing enzymatic conformational fluctuations and enzyme-substrate interactions by single-molecule FRET-magnetic tweezers microscopy.
    Guo Q; He Y; Lu HP
    Phys Chem Chem Phys; 2014 Jul; 16(26):13052-8. PubMed ID: 24853252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance studies of the binding of oligonucleotide substrates to mutants of staphylococcal nuclease.
    Chuang WJ; Gittis AG; Mildvan AS
    Proteins; 1994 Jan; 18(1):68-80. PubMed ID: 8146123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorometric assay for DNA cleavage reactions characterized with BamHI restriction endonuclease.
    Lee SP; Porter D; Chirikjian JG; Knutson JR; Han MK
    Anal Biochem; 1994 Aug; 220(2):377-83. PubMed ID: 7978282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.