These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 9927760)
1. Synthesis and applications for unnatural sugar nucleotides. Elhalabi JM; Rice KG Curr Med Chem; 1999 Feb; 6(2):93-116. PubMed ID: 9927760 [TBL] [Abstract][Full Text] [Related]
2. Regeneration of sugar nucleotide for enzymatic oligosaccharide synthesis. Ichikawa Y; Wang R; Wong CH Methods Enzymol; 1994; 247():107-27. PubMed ID: 7898347 [No Abstract] [Full Text] [Related]
3. A chemo-enzymatic approach to the study of carbohydrate recognition in biological systems. Hendrix M; Wong CH Enantiomer; 1996; 1(4-6):305-10. PubMed ID: 9676274 [TBL] [Abstract][Full Text] [Related]
4. Therapeutic applications of sugar-mimicking glycosidase inhibitors. Asano N; Kato A; Watson AA Mini Rev Med Chem; 2001 Jul; 1(2):145-54. PubMed ID: 12374106 [TBL] [Abstract][Full Text] [Related]
5. Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. Burkart MD; Vincent SP; Düffels A; Murray BW; Ley SV; Wong CH Bioorg Med Chem; 2000 Aug; 8(8):1937-46. PubMed ID: 11003139 [TBL] [Abstract][Full Text] [Related]
6. Combinatorial approaches to iminosugars as glycosidase and glycosyltransferase inhibitors. Cipolla L; La Ferla B; Gregori M Comb Chem High Throughput Screen; 2006 Sep; 9(8):571-82. PubMed ID: 17017877 [TBL] [Abstract][Full Text] [Related]
8. Carbohydrates and derivatives as potential drug candidates with emphasis on the selectin and linear-B area. Ohrlein R Mini Rev Med Chem; 2001 Nov; 1(4):349-61. PubMed ID: 12369962 [TBL] [Abstract][Full Text] [Related]
9. Development of inhibitors as research tools for carbohydrate-processing enzymes. Gloster TM Biochem Soc Trans; 2012 Oct; 40(5):913-28. PubMed ID: 22988843 [TBL] [Abstract][Full Text] [Related]
10. Design, synthesis and biological evaluation of iminosugar-based glycosyltransferase inhibitors. Compain P; Martin OR Curr Top Med Chem; 2003; 3(5):541-60. PubMed ID: 12570865 [TBL] [Abstract][Full Text] [Related]
11. An efficient approach to the discovery of potent inhibitors against glycosyltransferases. Hosoguchi K; Maeda T; Furukawa J; Shinohara Y; Hinou H; Sekiguchi M; Togame H; Takemoto H; Kondo H; Nishimura S J Med Chem; 2010 Aug; 53(15):5607-19. PubMed ID: 20684602 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of selected unnatural sugar nucleotides for biotechnological applications. Qiao M; Li B; Ji Y; Lin L; Linhardt R; Zhang X Crit Rev Biotechnol; 2021 Feb; 41(1):47-62. PubMed ID: 33153306 [TBL] [Abstract][Full Text] [Related]
15. C-glycosides and aza-C-glycosides as potential glycosidase and glycosyltransferase inhibitors. Zou W Curr Top Med Chem; 2005; 5(14):1363-91. PubMed ID: 16305536 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of nucleotide derivatives and sugar nucleotide analogs as inhibitors of glycosyltransferases. Osumi K; Kawauchi N; Lu AH; Hindsgaul O; Palcic MM Nucleic Acids Symp Ser; 2000; (44):89-90. PubMed ID: 12903282 [TBL] [Abstract][Full Text] [Related]
17. Chemo-enzymatic synthesis of 1,4-oxazepanyl sugar as potent inhibitor of chitinase. Huang GL; Zhang DW; Zhao HJ; Zhang HC; Wang PG Bioorg Med Chem; 2006 Apr; 14(7):2446-9. PubMed ID: 16321537 [TBL] [Abstract][Full Text] [Related]
18. Mechanism-based probing, characterization, and inhibitor design of glycosidases and glycosyltransferases. Hinou H; Nishimura S Curr Top Med Chem; 2009; 9(1):106-16. PubMed ID: 19199999 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and analysis of specific covalent inhibitors of endo-xyloglucanases. Fenger TH; Brumer H Chembiochem; 2015 Mar; 16(4):575-83. PubMed ID: 25663665 [TBL] [Abstract][Full Text] [Related]
20. Carbohydrate mimetics-based glycosyltransferase inhibitors. Compain P; Martin OR Bioorg Med Chem; 2001 Dec; 9(12):3077-92. PubMed ID: 11711283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]