These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 9928109)

  • 1. Reducing side reactions in protease-catalyzed tripeptide (RGD) synthesis.
    So JE; Bae BK; Kim BG
    Ann N Y Acad Sci; 1998 Dec; 864():327-31. PubMed ID: 9928109
    [No Abstract]   [Full Text] [Related]  

  • 2. Deblocking in peptide synthesis with immobilized carboxypeptidase Y.
    Royer GP
    Methods Enzymol; 1987; 136():157-62. PubMed ID: 3683191
    [No Abstract]   [Full Text] [Related]  

  • 3. Enzyme-catalyzed synthesis of a bioactive oligopeptide in nearly anhydrous solvents with polyethylene glycol-modified proteases.
    Nakajima A; Hirano Y; Terai T; Goto K; Hayashi T; Ikada Y
    J Biomater Sci Polym Ed; 1990; 1(3):183-90. PubMed ID: 2275920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity chromatography of trypsin and related enzymes. IV. Quantitative comparison of affinity adsorbents containing various arginine peptides.
    Nishikata M; Kasai KI; Ishii SI
    J Biochem; 1977 Nov; 82(5):1475-84. PubMed ID: 591512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From 10,000 to 1: Selective synthesis and enzymatic evaluation of fluorescence resonance energy transfer peptides as specific substrates for chymopapain.
    Diaz-Mochon JJ; Planonth S; Bradley M
    Anal Biochem; 2009 Jan; 384(1):101-5. PubMed ID: 18814838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide bond formation between the active-site thiol and one of the several free thiol groups of chymopapain.
    Kóródi I; Asbóth B; Polgár L
    Biochemistry; 1986 Nov; 25(22):6895-900. PubMed ID: 3801400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide synthesis catalyzed by polyethylene glycol-modified chymotrypsin in organic solvents.
    Gaertner HF; Puigserver AJ
    Proteins; 1988; 3(2):130-7. PubMed ID: 3399494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles.
    Schellenberger V; Turck CW; Hedstrom L; Rutter WJ
    Biochemistry; 1993 Apr; 32(16):4349-53. PubMed ID: 8476865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dityrosine-based substrate for a protease assay: application for the selective assessment of papain and chymopapain activity.
    Kim CJ; Lee DI; Lee CH; Ahn IS
    Anal Chim Acta; 2012 Apr; 723():101-7. PubMed ID: 22444580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Episelection: novel Ki approximately nanomolar inhibitors of serine proteases selected by binding or chemistry on an enzyme surface.
    Katz BA; Finer-Moore J; Mortezaei R; Rich DH; Stroud RM
    Biochemistry; 1995 Jul; 34(26):8264-80. PubMed ID: 7599119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Totally enzymatic synthesis of peptides. Penicillin acylase-catalyzed protection and deprotection of amino groups as important building blocks of this strategy.
    Svedas VK; Beltser AI
    Ann N Y Acad Sci; 1998 Dec; 864():524-7. PubMed ID: 9928135
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence for hemiketals as intermediates in the inactivation of serine proteinases with halomethyl ketones.
    McMurray JS; Dyckes DF
    Biochemistry; 1986 Apr; 25(8):2298-301. PubMed ID: 3518799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state kinetics of plasmin- and trypsin-catalysed hydrolysis of a number of tripeptide-p-nitroanilides.
    Christensen U; Ipsen HH
    Biochim Biophys Acta; 1979 Aug; 569(2):177-83. PubMed ID: 38847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling-Reagent-Free Synthesis of Dipeptides and Tripeptides Using Amino Acid Ionic Liquids.
    Furukawa S; Fukuyama T; Matsui A; Kuratsu M; Nakaya R; Ineyama T; Ueda H; Ryu I
    Chemistry; 2015 Aug; 21(34):11980-3. PubMed ID: 26213326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetically influential ionizations of chymopapain M.
    Thomas MP; Mellor GW; Brocklehurst K
    Biochem Soc Trans; 1993 May; 21(2):217S. PubMed ID: 8359467
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthesis of fragments by classical solution methods for use in cytochrome c semisynthesis.
    Borin G; Marchiori F; Calderan A; Corradin G; Wallace CJ
    Biopolymers; 1986 Dec; 25(12):2271-9. PubMed ID: 3026506
    [No Abstract]   [Full Text] [Related]  

  • 17. Protecting groups for the enzymatic peptide synthesis.
    Flörsheimer A; Schwarz A; Steinke D; Kittelmann M; Herrmann G; Kula MR; Wandrey C
    Ann N Y Acad Sci; 1990; 613():633-7. PubMed ID: 2076009
    [No Abstract]   [Full Text] [Related]  

  • 18. Solution-phase automated synthesis of tripeptide derivatives.
    Kuroda N; Hattori T; Kitada C; Sugawara T
    Chem Pharm Bull (Tokyo); 2001 Sep; 49(9):1138-46. PubMed ID: 11558600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of substituted benzyl esters as carboxyl-protecting groups in solid-phase peptide synthesis.
    Prestidge RL; Harding DR; Hancock WS
    J Org Chem; 1976 Jul; 41(15):2579-83. PubMed ID: 781194
    [No Abstract]   [Full Text] [Related]  

  • 20. Chymotrypsin-catalyzed peptide synthesis. Kinetic analysis of the kinetically controlled peptide-bond formation.
    Bizzozero SA; Dutler H; Rückert P
    Int J Pept Protein Res; 1988 Jul; 32(1):64-73. PubMed ID: 3220656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.