These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9928301)

  • 1. Analysis of the central pattern generator for swimming in the mollusk Clione.
    Arshavsky YI; Deliagina TG; Orlovsky GN; Panchin YV; Popova LB; Sadreyev RI
    Ann N Y Acad Sci; 1998 Nov; 860():51-69. PubMed ID: 9928301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of locomotion in marine mollusk Clione limacina. VIII. Cerebropedal neurons.
    Panchin YV; Popova LB; Deliagina TG; Orlovsky GN; Arshavsky YI
    J Neurophysiol; 1995 May; 73(5):1912-23. PubMed ID: 7623090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of locomotion in marine mollusc Clione limacina. X. Effects of acetylcholine antagonists.
    Panchin YV; Sadreev RI; Arshavsky YI
    Exp Brain Res; 1995; 106(1):135-44. PubMed ID: 8542969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of locomotion in marine mollusc Clione limacina. III. On the origin of locomotory rhythm.
    Arshavsky YuI ; Beloozerova IN; Orlovsky GN; Panchin YuV ; Pavlova GA
    Exp Brain Res; 1985; 58(2):273-84. PubMed ID: 2581799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Startle phase of escape swimming is controlled by pedal motoneurons in the pteropod mollusk Clione limacina.
    Satterlie RA; Norekian TP; Robertson KJ
    J Neurophysiol; 1997 Jan; 77(1):272-80. PubMed ID: 9120569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin-induced spike narrowing in a locomotor pattern generator permits increases in cycle frequency during accelerations.
    Satterlie RA; Norekian TP; Pirtle TJ
    J Neurophysiol; 2000 Apr; 83(4):2163-70. PubMed ID: 10758125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The generation of locomotor rhythmicity in the nervous system of large and small individuals of the pteropod mollusk Clione limacina].
    Panchin IuV
    Neirofiziologiia; 1990; 22(4):568-70. PubMed ID: 2284033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic activation of startle motoneurons by a pair of cerebral interneurons in the pteropod mollusk Clione limacina.
    Norekian TP; Satterlie RA
    J Neurophysiol; 1997 Jan; 77(1):281-8. PubMed ID: 9120570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of putative glutamatergic neurons and their connections in the locomotor central pattern generator of the mollusk, Clione limacina.
    Sadreyev RI; Panchin YV
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Jun; 126(2):193-202. PubMed ID: 10936759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of startle and swimming neural systems in the pteropod mollusk Clione limacina: role of the cerebral cholinergic interneuron.
    Norekian TP
    J Neurophysiol; 1997 Jul; 78(1):308-20. PubMed ID: 9242282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina.
    Sakurai A; Gunaratne CA; Katz PS
    J Neurophysiol; 2014 Sep; 112(6):1317-28. PubMed ID: 24920032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hyperpolarization-activated inward current alters swim frequency of the pteropod mollusk Clione limacina.
    Pirtle TJ; Willingham K; Satterlie RA
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Dec; 157(4):319-27. PubMed ID: 20696266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of locomotion in marine mollusc Clione limacina. II. Rhythmic neurons of pedal ganglia.
    Arshavsky YuI ; Beloozerova IN; Orlovsky GN; Panchin YuV ; Pavlova GA
    Exp Brain Res; 1985; 58(2):263-72. PubMed ID: 2987013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glutamate agonists on the isolated neurons from the locomotor network of the mollusc Clione limacina.
    Sadreyev RI; Panchin YV
    Neuroreport; 2002 Dec; 13(17):2235-9. PubMed ID: 12488803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral serotonergic neurons reciprocally modulate swim and withdrawal neural networks in the mollusk Clione limacina.
    Norekian TP; Satterlie RA
    J Neurophysiol; 1996 Feb; 75(2):538-46. PubMed ID: 8714633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synchronization of the work of pedal ganglia of pteropod mollusks during locomotion].
    Panchin IuV
    Neirofiziologiia; 1984; 16(4):540-3. PubMed ID: 6493401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of the pleural type 12 interneuron to swim acceleration in Clione limacina.
    Pirtle TJ; Satterlie RA
    Invert Neurosci; 2006 Dec; 6(4):161-8. PubMed ID: 17051400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity in the multifunctional buccal central pattern generator of Helisoma illuminated by the identification of phase 3 interneurons.
    Quinlan EM; Murphy AD
    J Neurophysiol; 1996 Feb; 75(2):561-74. PubMed ID: 8714635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of locomotion in marine mollusc Clione limacina. IV. Role of type 12 interneurons.
    Arshavsky YuI ; Beloozerova IN; Orlovsky GN; Panchin YuV ; Pavlova GA
    Exp Brain Res; 1985; 58(2):285-93. PubMed ID: 2987014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-locked coordination between two rhythmically active feeding structures in the mollusk Clione limacina. I. Motor neurons.
    Malyshev AY; Norekian TP
    J Neurophysiol; 2002 Jun; 87(6):2996-3005. PubMed ID: 12037203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.