These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9928316)

  • 1. Modeling of the spinal neuronal circuitry underlying locomotion in a lower vertebrate.
    Lansner A; Kotaleski JH; Grillner S
    Ann N Y Acad Sci; 1998 Nov; 860():239-49. PubMed ID: 9928316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.
    Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A
    Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey.
    Wallén P; Ekeberg O; Lansner A; Brodin L; Tråvén H; Grillner S
    J Neurophysiol; 1992 Dec; 68(6):1939-50. PubMed ID: 1283406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord.
    Cangiano L; Grillner S
    J Neurosci; 2005 Jan; 25(4):923-35. PubMed ID: 15673673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexibility in the patterning and control of axial locomotor networks in lamprey.
    Buchanan JT
    Integr Comp Biol; 2011 Dec; 51(6):869-78. PubMed ID: 21743089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.I. Segmental oscillations dependent on reciprocal inhibition.
    Kotaleski JH; Grillner S; Lansner A
    Biol Cybern; 1999 Oct; 81(4):317-30. PubMed ID: 10541935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neuronal correlate of locomotion in fish. "Fictive swimming" induced in an in vitro preparation of the lamprey spinal cord.
    Cohen AH; Wallén P
    Exp Brain Res; 1980; 41(1):11-8. PubMed ID: 7461065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation.
    Buchanan JT; Cohen AH
    J Neurophysiol; 1982 May; 47(5):948-60. PubMed ID: 7086476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal substrates for state-dependent changes in coordination between motoneuron pools during fictive locomotion in the lamprey spinal cord.
    Mentel T; Cangiano L; Grillner S; Büschges A
    J Neurosci; 2008 Jan; 28(4):868-79. PubMed ID: 18216195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-HT Modulation of identified segmental premotor interneurons in the lamprey spinal cord.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2006 Aug; 96(2):931-5. PubMed ID: 16707720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons.
    Kotaleski JH; Lansner A; Grillner S
    Biol Cybern; 1999 Oct; 81(4):299-315. PubMed ID: 10541934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey.
    el Manira A; Tegnér J; Grillner S
    J Neurophysiol; 1994 Oct; 72(4):1852-61. PubMed ID: 7823105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neuronal network for locomotion in the lamprey spinal cord: evidence for the involvement of commissural interneurons.
    Buchanan JT; McPherson DR
    J Physiol Paris; 1995; 89(4-6):221-33. PubMed ID: 8861820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-voltage-activated calcium channels in the lamprey locomotor network: simulation and experiment.
    Tegnér J; Hellgren-Kotaleski J; Lansner A; Grillner S
    J Neurophysiol; 1997 Apr; 77(4):1795-812. PubMed ID: 9114237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey.
    Rovainen CM
    J Neurophysiol; 1985 Oct; 54(4):959-77. PubMed ID: 2999351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons.
    Hellgren J; Grillner S; Lansner A
    Biol Cybern; 1992; 68(1):1-13. PubMed ID: 1486127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.