These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9928316)

  • 21. Local serotonergic modulation of calcium-dependent potassium channels controls intersegmental coordination in the lamprey spinal cord.
    Matsushima T; Grillner S
    J Neurophysiol; 1992 Jun; 67(6):1683-90. PubMed ID: 1629770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and analysis of a new locomotion control neural networks.
    Liu Q; Wang JZ
    Biol Cybern; 2018 Aug; 112(4):345-356. PubMed ID: 29700596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2008 Aug; 100(2):716-22. PubMed ID: 18509075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey.
    Deliagina TG; Zelenin PV; Fagerstedt P; Grillner S; Orlovsky GN
    J Neurophysiol; 2000 Feb; 83(2):853-63. PubMed ID: 10669499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lamprey spinal interneurons and their roles in swimming activity.
    Buchanan JT
    Brain Behav Evol; 1996; 48(5):287-96. PubMed ID: 8932869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos.
    Perrins R; Soffe SR
    J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of premotor interneuron populations on the frequency of the spinal pattern generator for swimming in Xenopus embryos: a simulation study.
    Wolf E; Roberts A
    Eur J Neurosci; 1995 Apr; 7(4):671-8. PubMed ID: 7620618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 5-HT and dopamine modulates CaV1.3 calcium channels involved in postinhibitory rebound in the spinal network for locomotion in lamprey.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2011 Mar; 105(3):1212-24. PubMed ID: 21228305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase-dependent effects of spinal cord stimulation on locomotor activity.
    Vogelstein RJ; Etienne-Cummings R; Thakor NV; Cohen AH
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):257-65. PubMed ID: 17009484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The hemisegmental locomotor network revisited.
    Cangiano L; Hill RH; Grillner S
    Neuroscience; 2012 May; 210():33-7. PubMed ID: 22433298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling.
    Hagevik A; McClellan AD
    J Neurophysiol; 1994 Oct; 72(4):1810-29. PubMed ID: 7823103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord.
    Grillner S; Wallén P; Hill R; Cangiano L; El Manira A
    J Physiol; 2001 May; 533(Pt 1):23-30. PubMed ID: 11351009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lateral turns in the Lamprey. I. Patterns of motoneuron activity.
    Fagerstedt P; Ullén F
    J Neurophysiol; 2001 Nov; 86(5):2246-56. PubMed ID: 11698515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms underlying the serotonergic modulation of the spinal circuitry for locomotion in lamprey.
    Wallén P; Christenson J; Brodin L; Hill R; Lansner A; Grillner S
    Prog Brain Res; 1989; 80():321-7; discussion 315-9. PubMed ID: 2699371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord.
    Harris-Warrick RM; Cohen AH
    J Exp Biol; 1985 May; 116():27-46. PubMed ID: 4056654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transmitter phenotypes of commissural interneurons in the lamprey spinal cord.
    Mahmood R; Restrepo CE; El Manira A
    Neuroscience; 2009 Dec; 164(3):1057-67. PubMed ID: 19737601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity of fin muscles and fin motoneurons during swimming motor pattern in the lamprey.
    Mentel T; Krause A; Pabst M; El Manira A; Büschges A
    Eur J Neurosci; 2006 Apr; 23(8):2012-26. PubMed ID: 16630049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.