These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 9928322)
1. Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae. Sillar KT; Reith CA; McDearmid JR Ann N Y Acad Sci; 1998 Nov; 860():318-32. PubMed ID: 9928322 [TBL] [Abstract][Full Text] [Related]
2. Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos. Perrins R; Soffe SR J Neurophysiol; 1996 Aug; 76(2):1025-35. PubMed ID: 8871217 [TBL] [Abstract][Full Text] [Related]
3. Aminergic modulation of glycine release in a spinal network controlling swimming in Xenopus laevis. McDearmid JR; Scrymgeour-Wedderburn JF; Sillar KT J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):111-7. PubMed ID: 9288679 [TBL] [Abstract][Full Text] [Related]
4. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles. Soffe SR; Zhao FY; Roberts A Eur J Neurosci; 2001 Feb; 13(3):617-27. PubMed ID: 11168570 [TBL] [Abstract][Full Text] [Related]
5. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord. Soffe SR J Neurosci; 1993 Oct; 13(10):4456-69. PubMed ID: 8410198 [TBL] [Abstract][Full Text] [Related]
6. The post-embryonic development of cell properties and synaptic drive underlying locomotor rhythm generation in Xenopus larvae. Sillar KT; Simmers AJ; Wedderburn JF Proc Biol Sci; 1992 Jul; 249(1324):65-70. PubMed ID: 1359549 [TBL] [Abstract][Full Text] [Related]
7. Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity. Roberts A; Perrins R J Physiol Paris; 1995; 89(4-6):241-8. PubMed ID: 8861822 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. Cangiano L; Grillner S J Neurosci; 2005 Jan; 25(4):923-35. PubMed ID: 15673673 [TBL] [Abstract][Full Text] [Related]
9. Experimentally derived model for the locomotor pattern generator in the Xenopus embryo. Dale N J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):489-510. PubMed ID: 8847642 [TBL] [Abstract][Full Text] [Related]
10. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles. Li WC; Roberts A; Soffe SR J Physiol; 2009 Apr; 587(Pt 8):1677-93. PubMed ID: 19221124 [TBL] [Abstract][Full Text] [Related]
12. Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos. Roberts A; Dale N; Evoy WH; Soffe SR J Neurophysiol; 1985 Jul; 54(1):1-10. PubMed ID: 2993537 [TBL] [Abstract][Full Text] [Related]
13. Central circuits controlling locomotion in young frog tadpoles. Roberts A; Soffe SR; Wolf ES; Yoshida M; Zhao FY Ann N Y Acad Sci; 1998 Nov; 860():19-34. PubMed ID: 9928299 [TBL] [Abstract][Full Text] [Related]
14. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles. Currie SP; Sillar KT J Neurophysiol; 2018 Mar; 119(3):786-795. PubMed ID: 29142093 [TBL] [Abstract][Full Text] [Related]
15. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization. Wiggin TD; Anderson TM; Eian J; Peck JH; Masino MA J Neurophysiol; 2012 Aug; 108(3):925-34. PubMed ID: 22572943 [TBL] [Abstract][Full Text] [Related]
16. The neuronal network for locomotion in the lamprey spinal cord: evidence for the involvement of commissural interneurons. Buchanan JT; McPherson DR J Physiol Paris; 1995; 89(4-6):221-33. PubMed ID: 8861820 [TBL] [Abstract][Full Text] [Related]
17. Influence of glycinergic inhibition on spinal neuron excitability during amphibian tadpole locomotion. Perrins R; Soffe SR Ann N Y Acad Sci; 1998 Nov; 860():472-4. PubMed ID: 9928343 [No Abstract] [Full Text] [Related]
18. The development of swimming rhythmicity in post-embryonic Xenopus laevis. Sillar KT; Wedderburn JF; Simmers AJ Proc Biol Sci; 1991 Nov; 246(1316):147-53. PubMed ID: 1685239 [TBL] [Abstract][Full Text] [Related]
19. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles. Green CS; Soffe SR J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207 [TBL] [Abstract][Full Text] [Related]
20. Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate. Li WC; Soffe SR; Roberts A J Neurosci; 2002 Dec; 22(24):10924-34. PubMed ID: 12486187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]