These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9928330)

  • 1. Statistical analysis and intersegmental delays reveal possible roles of network depression in the generation of spontaneous activity in the chick embryo spinal cord.
    Tabak J; O'Donovan MJ
    Ann N Y Acad Sci; 1998 Nov; 860():428-31. PubMed ID: 9928330
    [No Abstract]   [Full Text] [Related]  

  • 2. [The spontaneous synaptic activity in a cell culture of chick embryo spinal cord].
    Mel'nik IV
    Neirofiziologiia; 1991; 23(3):280-90. PubMed ID: 1881485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord.
    Tabak J; Rinzel J; O'Donovan MJ
    J Neurosci; 2001 Nov; 21(22):8966-78. PubMed ID: 11698607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength.
    Gonzalez-Islas C; Wenner P
    Neuron; 2006 Feb; 49(4):563-75. PubMed ID: 16476665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and molecular characterization of interneurons in the developing spinal cord.
    Wenner P; Matise MP; Joyner A; O'Donovan MJ
    Ann N Y Acad Sci; 1998 Nov; 860():425-7. PubMed ID: 9928329
    [No Abstract]   [Full Text] [Related]  

  • 7. An ambiguous fast synapse: a new twist in the tale of two transmitters.
    Salter MW; De Koninck Y
    Nat Neurosci; 1999 Mar; 2(3):199-200. PubMed ID: 10195207
    [No Abstract]   [Full Text] [Related]  

  • 8. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ontogeny of rhythmic motor patterns generated in the embryonic rat spinal cord.
    Ren J; Greer JJ
    J Neurophysiol; 2003 Mar; 89(3):1187-95. PubMed ID: 12626606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA-mediated synaptic potentials in chick spinal cord and sensory neurons.
    Choi DW; Farb DH; Fischbach GD
    J Neurophysiol; 1981 Apr; 45(4):632-43. PubMed ID: 7229673
    [No Abstract]   [Full Text] [Related]  

  • 11. The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord.
    Nishimaru H; Kakizaki M
    Acta Physiol (Oxf); 2009 Oct; 197(2):83-97. PubMed ID: 19673737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture.
    Obata K; Oide M; Tanaka H
    Brain Res; 1978 Apr; 144(1):179-84. PubMed ID: 638760
    [No Abstract]   [Full Text] [Related]  

  • 13. Glycine conductance changes in chick spinal cord neurons developing in culture.
    Melnick IV; Baev KV
    Neuroscience; 1993 Jan; 52(2):347-60. PubMed ID: 8095704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that glycine and GABA mediate postsynaptic inhibition of bulbar respiratory neurons in the cat.
    Haji A; Takeda R; Remmers JE
    J Appl Physiol (1985); 1992 Dec; 73(6):2333-42. PubMed ID: 1337074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emergence of inhibition in the chick embryo spinal cord.
    Stokes BT; Bignall KE
    Brain Res; 1974 Sep; 77(2):231-42. PubMed ID: 4854813
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of NMDA-induced membrane potential oscillations and spontaneous rhythmic activity in the chick spinal cord.
    Chub N; Moore LE; O'Donovan MJ
    Ann N Y Acad Sci; 1998 Nov; 860():467-9. PubMed ID: 9928341
    [No Abstract]   [Full Text] [Related]  

  • 17. GABA(B) receptors are the first target of released GABA at lamina I inhibitory synapses in the adult rat spinal cord.
    Chéry N; De Koninck Y
    J Neurophysiol; 2000 Aug; 84(2):1006-11. PubMed ID: 10938323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trifluoperazine blocks GABA-gated chloride currents in cultured chick spinal cord neurons.
    Yang J; Zorumski CF
    J Neurophysiol; 1989 Feb; 61(2):363-73. PubMed ID: 2465392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo.
    Chub N; O'Donovan MJ
    J Neurophysiol; 2001 May; 85(5):2166-76. PubMed ID: 11353031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of spontaneous inhibitory synaptic currents in cultured rat spinal cord and medullary neurons.
    Lewis CA; Faber DS
    J Neurophysiol; 1996 Jul; 76(1):448-60. PubMed ID: 8836236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.